
Sensor-Actuator-Comparison as a Basis for
Collision Detection for a Quadruped Robot

Jan Hoffmann and Daniel Göhring

Institut für Informatik, LFG Künstliche Intelligenz,
Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

http://www.aiboteamhumboldt.com

Abstract. Collision detection in a quadruped robot based on the com-
parison of sensor readings (actual motion) to actuator commands (in-
tended motion) is described. Ways of detecting such incidences using just
the sensor readings from the servo motors of the robot’s legs are shown.
Dedicated range sensors or collision detectors are not used. It was found
that comparison of motor commands and actual movement (as sensed by
the servo’s position sensor) allowed the robot to reliably detect collisions
and obstructions. Minor modifications to make the system more robust
enabled us to use it in the RoboCup domain, enabling the system to
cope with arbitrary movements and accelerations apparent in this highly
dynamic environment. A sample behavior is outlined that utilizes the
collision information. Further emphasis was put on keeping the process
of calibration for different robot gaits simple and manageable.

1 Introduction

Many research efforts in mobile robotics aim at enabling the robot to safely and
robustly navigate and to move about both known and unknown environments
(e.g. the rescue scenarios in the RoboCup Rescue League [1], planetary surfaces
[13]). While wheeled robots are widely used in environments where the robot can
move on flat, even surfaces (such as office environments or environments that are
accessible to wheelchairs [5]), legged robots are generally believed to be able to
deal with a wider range of environments and surfaces. There are many designs
of legged robots varying in the number of legs used, ranging from insectoid or
arachnoid with 6, 8 or more legs (e.g. [2]), 4-legged such as the Sony Aibo [3],
humanoid: 2-legged (e.g. [8]).

Obstacle avoidance is often realized using a dedicated (360◦) range sensor
[12]. Utilizing vision rather than a dedicated sensor is generally a much harder
task since a degree of image understanding is necessary. For the special case of
color coded environments, straight forward solutions exist that make use of the
knowledge about the robot’s environment (such as the color of the surface or
the color of obstacles [6]). If, however, obstacle avoidance fails, robots often are
unable to detect collisions since many designs lack touch sensors or bumpers. The
robot is unaware of the failure of its intended action and ends up in a situation it



2

a) b)

Fig. 1. a) A collision of two robots. Both robots cannot move into the desired direction.
Even worse, robots often interlock their legs which further prevent them from resolving
the situation.
b) Illustration of the DOFs of the Aibo. Each robot leg has three joints, two degrees
of freedom (DOF) in the shoulder joint and one DOF in the knee joint, denoted Φ1, Φ2

and Φ3. Joints are labeled in the following way: F (ront) or H(ind) + L(eft) or R(ight)
+ Number of joint (1, 2, 3). Using this nomenclature, the knee joint of the highlighted
leg in the above image is FR3.

is unable to resolve; it is - quite literally - “running into a wall” without noticing
it.

Apart from the current action failing, collisions (and subsequently being
stuck) have severe impact on the robot’s localization if odometry is used to any
degree in the localization process (as is the case in [11, 4]). For these approaches
to be robust against collisions, they tend to not put much trust in odometry
data .

This work investigates the possibilities of detecting collisions of a Sony Aibo
4-legged robot using the walking engine and software framework described in
[10]. The robot does not have touch sensors that can be used to detect collisions
of it with the environment. As we will show, the servo motor’s direction sensors
can be used for this task. Work by [9] shows that it is possible to learn servo
direction measurements for different kinds of (unhindered) motions and use this
to detect slippage of the robot’s legs and also to detect collisions of the robot
with its environment.

The approach to collision detection using the Aibo presented by [9] stores a
large number of reference sensor readings and uses these to detect unusual sen-
sor readings caused by collision and slip. Our approach differs in that we make
assumptions about the robot motion that allows the robot to detect collisions
by comparing the actuator command (desired motion) to the sensor readings
(actual motion). The used set of reference values can be much smaller using
this approach. We will show that the method is robust and also quickly ad-
justable to different walking gaits, robots, and surfaces. Section 4 compares the
two approaches in detail.



3

-500

-400

-300

-200

-100

0

100

200

300

50 100 150 250 300 350 400

t [8 ms]

jo
in

t a
nl

ge
 [

m
ra

d]

 

actuator FL1
sensor FL1

Fig. 2. Sensor and actuator data of freely moving legs (in the air) at a desired ground
speed of 75 mm/s. Sensor and actuator curves are almost congruent except for a slight
phase shift.

2 Method

2.1 Comparison of the Actuator Signals and the Direction Sensor
of the Robot’s Servos

The presented collision detection method is based on the comparison of actuator
commands to direction sensor readings. Fig. 2 shows typical sensor measurements
alongside actuator signals.

It can be seen that for an unhindered period of movement T the sensor and
actuator curve of a joint are congruent, i.e. they are of the same shape but shifted
by a phase ∆ϕ . If ∆ϕ was zero, the area in between the two curves becomes
minimal:

0 ≤
∫ t0+T

t0

(a(t)− s(t + ∆ϕ))2 dt (1)

Tests using discrete time showed that collisions cause a discrepancy between
actuator and sensor data which can be recognized by calculating the area be-
tween the sensor and actuator data. It was found that it was not necessary to
sum over one complete period of the motion to detect collisions. Shorter intervals
yield faster response times. Trading off response time and sensitivity to sensor
noise, we found that 12 frames1 were sufficient. The last 12 frames are used to
calculate the the Total Squared Difference (TSD ):

TSDa,s(∆ϕ) =
t2∑

i=t1

(ai − s(i+∆ϕ))2 (2)

Diagram 3 shows the TSD of the FL1 joint (left shoulder) for a robot colliding
with the field boundary. The peaks in the TSD when the robot’s leg hits the
boundary are clearly distinguishable.

1 A frame is an atomic step of the motion module; there are 125 frames per second,
one frame is 8 ms long.



4

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400

t [8 ms]

To
ta

l S
q.

 D
iff

. [
m

ra
d]

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

jo
in

t a
ng

le
 [

m
ra

d] TSD for 
last 12 frames

actuator, FL1

sensor FL1, phase
shift = 8 frames

 

Fig. 3. Sensor and actuator data of a collision with the field boundary walking forward
at 150 mm/s. In the TSD the collisions can be seen as peaks in the curve. They
occur briefly after the actual collision and can easily be distinguished from unhindered
movements.

For classification of collisions the TSD is compared to a threshold. If the TSD
is larger than this threshold, it is assumed that a collision has occurred. The
thresholds for every motion component (i.e. walking forward/backward, walking
sideways, rotation) are saved in a lookup table. For combined motions (e.g.
walking forward and walking sideways at the same time) the different thresholds
for each motion component are summed as described in section 3.3.

2.2 Aligning the Actuator and Sensor Curve

Fig. 4 shows the impulse response of one of the robot’s servo motors. It can
be seen that the joint doesn’t move for about 5 frames (40 ms). Reasons for
this are momentum and calculation time; the step height and the load that
the joints have to work against also have an influence on the observed phase
difference. After 5 frames the joint slowly starts moving and accelerates until it
reaches its maximum speed after 8 frames. Just before reaching its destination,
the joint angle changes are decreasing. This is due to the joint’s P.I.D. controller
smoothing the robot’s motions.

-400

0

400

800

1200

1600

2000

0 10 20 60

t [8 ms]

jo
in

t a
ng

le
 [

m
ra

d]

actuator FL1
sensor FL1

 

30 40 50

Fig. 4. Sensor and actuator data for a rectangular actuator impulse. The actuator
function jumps to its new value. The corresponding servo’s direction sensor readings
are shown.



5

-1000

-800

-600

-400

-200

0

200

400

600

50 100

t [8 ms] t [8 ms]

jo
in

t 
an

gl
e 

[m
ra

d]

jo
in

t 
an

gl
e 

[m
ra

d]

actuator FL1
sensor FL1
difference

-1000
-800

-600
-400

-200

0
200

400
600

50 100

Fig. 5. Left. Sensor and actuator data for walking freely at 150 mm/s. Actuator and
sensor curve out of phase and the corresponding TSD Right. As above but phase
shifted. Sensor function is shifted by 8 frames. The corresponding TSD now clearly
shows collisions (peaks in the curve).

In figure 5, a) the TSD is shown for a sample motion. The smallest values
of the TSD are found at the intersection of the two curves. Collision effects
have little influence on the difference level. In b) actuator and sensor curves are
aligned by shifting the sensor data curve left by 8 frames. The calculated TSD
shows a strong response to collisions.

Since phase shifts of varying length were observed, the 12 frames wide win-
dow of the TSD is calculated for several phase shifts ∆ϕ ranging from 6 to 15
frames. The smallest TSD is used to detect collisions. This approach eliminates
phase shifts which are not caused by collisions and reduces the risk of wrongly
recognized collisions (false positives). Due to the small number of possible values
of ∆ϕ , real collisions still produce a strong signal.

2.3 Filtering of Actuator Input

The presented approach to collision detection works well under laboratory condi-
tions, i.e. when applied to homogeneous motions with small, well defined motion
changes (see sample application described in section 4). In real world appli-
cations, motion commands may change rapidly over time as the robot interacts
with the environment. In the dynamic, highly competitive RoboCup domain, the
robot changes its walking speed and direction quite frequently as determined by
the behavior layer of the agent. Figure 6 shows the actuator commands for a
robot playing soccer. Most of these changes are relatively small and unproblem-
atic but some are too extreme to be executed by the servos, e.g. when the robot
suddenly sees the ball and moves towards it at the highest possible speed. This
is compensated by increasing the TSD threshold if the joint acceleration exceeds
a certain value. This increased threshold is used only for some tenths of a second
and then falls back to its initial level.

2.4 Threshold Calibration

The values of the thresholds are calibrated manually. They are measured for
each of the elementary motions (forward/backward, sideways, rotation) in steps



6

-1000

-800

-600

-400

-200

0

200

400

600

10 30 50 70 90 110 130 150 170

t [8 ms]

jo
in

t a
ng

le
 [

m
ra

d]

sensor FL1

actuator FL1

Fig. 6. Actuator commands and sensor measurements during an actual RoboCup game.
The robot is changing directions frequently. It can be seen that the servo is unable to
perform the requested motions.

of 30 mm/s and 0.5 rad respectively. This adds up to a total of 40 measurements
needed for operation.

A threshold is determined by letting the robot walk freely and without col-
lision or slip on the field freely for about three seconds while monitoring both
motor commands and sensor readings. The TSD is calculated and the maximum
TSD is used to derive a threshold value. In our experiments, the maximum TSD
value that occurred was tripled; this means that for the robot to detect a colli-
sion, the TSD must be 3 times greater than the maximum TSD measured during
calibration.

In our experiments the calibration was done by hand since robot gaits do
not undergo frequent change and the calibration process is performed quickly.
We therefore did not see the need for automating the calibration process (given
that an external supervisor has to make sure that no collisions occur during
calibration anyway).

3 Detectability of Collisions During Directed Robot
Locomotion

For different walking directions, collisions have different effects on the robot’s
joints depending on how the joints are hindered in their motion. Therefore, the
following cases were investigated. In our experiments, only the legs’ servos were
used for collision detection. However, the robot’s head motors can also be used
to directly detect whether a robot hits an obstacle with its head (or its head’s
freedom of motion is otherwise impaired by an obstacle).

3.1 Elementary Motions

Walking Forward or Backward. Collisions are easily detected in the front left
or right shoulder joints FL1 and FR1 of the robot, depending on which of the
legs hits the obstacle (see 1). This way collisions with the field boundary can be
detected. Collisions with other robots can also be detected, but not as reliably



7

because this sort of collision is of a much more complex type (the other robot
may be moving, etc.).
Collisions when walking backwards are slightly harder to recognize because of
the particular position of the joints of the hind legs. This is due to the robot’s
body being tilted forward and the backward motion not being symmetric to the
forward motion.

Walking sideways. Collisions which are occurring while the robot is walking
sideways can be recognized best in the sideways shoulder joint θ2 (e.g. FL2 ) on
the side where the robot hits the obstacle. This is not quite as reliable as in
the case of forward motions because the Aibo loses traction more quickly when
walking sideways.

Turning. The same joints that are used to recognize collisions while moving
sideways can be used to recognize collisions during rotation. This way, a common
type of collision can also be detected: The legs of two robots attempting to turn
interlock and prevent the rotation from being performed successfully. How well
this can be recognized depends on how much grip the robots have and on the
individual turning (or moving) speeds.

3.2 Leg Lock

The before mentioned “leg lock” also occurs in situations where two robots are
close to each other (e.g. when chasing the ball). Leg lock is detected in the same
way collisions are. Therefore, “leg lock” is detected but cannot be distinguished
from other collisions.

3.3 Superposition of Elementary Motions

While it is easy for the robot to recognize the above motions separately, it is
harder to recognize collisions when motions are combined, e.g. when the robot
walks forward and sideways at the same time. For lower speeds, the result-
ing motions can be viewed as a superposition of the three elementary motions
and the resulting threshold is approximated by the sum of the three individual
thresholds:

T (v, s, r) = T (v, 0, 0) + T (0, s, 0) + T (0, 0, r) (3)

where v is the forward, s the sideways, and r the rotation component of the
motion. For high speeds, the requested motions exceed the servos performance.
To compensate for this, the collision thresholds are increased by multiplication
by a scale factor f which is a function of v and s:

f = f(v, s) =

{
1 if v < 50mm/s and s < 50mm/s
v+s
100 otherwise

(4)

With this extension, the method can be applied to practically all kinds of
robot motions and speeds that we observed in a RoboCup game.



8

option 
collision-detector initial

left
stuck

right
stuck

walk

option collision-detector

state initial

left

stuck

right

stuck
initial

if else if else if else

collision

on front

left

collision

on front

right

collision

on head

Fig. 7. Simple behavior option graph denoted in XABSL [7]. The robot walks forward
until it hits an obstacle. It then turns away from it and continues walking in the new
direction.

4 Application and Performance

Sample Application. A simple behavior was implemented in the XABSL behavior
mark up language [7]: The robot walks straight ahead; if it touches an obstacle
with one of its front legs, it stops and turns left or right depending on the leg
the collision was detected with. The robot turns away from where the collision
occurred then continues to walk straight.

This simple behavior was tested on the RoboCup field in our laboratory
and it was found to work reliably regardless of the type of collision (e.g. static
obstacle or other robots). Collisions were detected with high accuracy. In some
rare cases, collisions would not be detected immediately because of slippage of
the robot’s legs. In these cases, the robot would recognize the collision after a
brief period of time (order of tenths of seconds).

RoboCup. As pointed out in [9], collision detection can be used to have the robot
“realize” that an intended action was not successful and to have it act accord-
ingly. It did, however, prove to be a difficult task to find the right action in a
situation where two robots run into each other. This usually happens when they
pursue the same goal, in our case when both are chasing the ball. Backing off
gives the opponent robot an advantage, pushing it makes the situation worse.
Current work investigates possible actions.

Other Approaches. A similar approach aimed at traction monitoring and colli-
sion detection was presented by another RoboCup team, the “Nubots”, in 2003
[9]. The method compares the current sensor data to reference sensor data. It



9

does not use actuator commands for collision detection. The reference data con-
sists of sensor data value and variance for a given motion type and is measured
prior to the run. This training is done by measuring the sensor data of possible
combinations of elementary motions. A four-dimensional lookup table is used to
store the reference data. The four dimensions of the table are: forward/backward
motion (backStrideLength), sideward motion (strafe), rotation (turn), and time
parameter which stores information about the relative position of the paw in
its periodic trajectory. Using this approach, the “Nubots” were able to detect
collisions and slip. However, the four-dimensional lookup table requires a con-
siderable amount of memory and training time (according to [9], 20x12x20x20
entries are used to fully describe a gait). During the training it is important that
no collisions or slip occur. Using the lookup-table, no assumptions are made
about similarities between actuator command and sensor readings.

In contrast, our approach makes the assumption that there is a similarity
between intended and actual motion and the variance of the sensor signal is
constant for the entire period of the motion. Making these (fair) assumptions,
very little memory is needed (40 parameters describe all possible motions) while
still achieving good results in detecting obstacles. The parameter table needed
for a given gait is generated quickly and easily.

5 Conclusion

With the presented method the robot is able to reliably detect collisions of a 4-
legged robot with obstacles on even surfaces (e.g. RoboCup field). Comparing
the requested motor command to the measured direction of the servo motors
of the robot’s legs was found to be an efficient way of detecting if the robot’s
freedom of motion was impaired. In a sample behavior, the robot turns away from
obstacles after having detected the collision. The method was extended for use
in RoboCup games. Here it is used to detect collisions (with players and the field
boundaries) and to let the robot act accordingly and also to improve localization
by providing additional information about the quality of current odometry data
(validity). Further work will focus on finding appropriate reactions in competitive
situations.

6 Acknowledgments

The project is funded by the Deutsche Forschungsgemeinschaft, Schwerpunkt-
programm “Kooperierende Teams mobiler Roboter in dynamischen Umgebun-
gen” (“Cooperative Teams of Mobile Robots in Dynamic Environments”).

Program code used was developed by the GermanTeam, a joint effort of the
Humboldt University of Berlin, University of Bremen, University of Dortmund,
and the Technical University of Darmstadt. Source code is available for download
at http://www.robocup.de/germanteam.



10

References

1. Robocup rescue web site. http://www.isd.mel.nist.gov/robocup2003. 2003.
2. J. E. Clark, J. G. Cham, S. A. Bailey, E. M. Froehlich, P. K. Nahata, R. J. Full,

and M. R. Cutkosky. Biomimetic Design and Fabrication of a Hexapedal Running
Robot. In Intl. Conf. Robotics and Automation (ICRA2001), 2001.

3. M. Fujita and H. Kitano. Development of an Autonomous Quadruped Robot for
Robot Entertainment. Autonomous Robots, 5(1):7–18, 1998.

4. J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison
of localization methods. Proceedings of the 1998 IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS’98), 1998.

5. A. Lankenau, T. Röfer, and B. Krieg-Brückner. Self-Localization in Large-Scale
Environments for the Bremen Autonomous Wheelchair. In Spatial Cognition III,
Lecture Notes in Artificial Intelligence. Springer, 2002.

6. S. Lenser and M. Veloso. Visual Sonar: Fast Obstacle Avoidance Using Monocular
Vision. In Proceedings of IROS’03, 2003.

7. M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel. Designing agent behavior
with the extensible agent behavior specification language XABSL. In 7th Interna-
tional Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Confer-
ences), Lecture Notes in Artificial Intelligence. Springer, 2004. to appear.

8. C. L. P. Dario, E. Guglielmelli. Humanoids and personal robots: design and ex-
periments. Journal of Robotic Systems, 18(2), 2001.

9. M. J. Quinlan, C. L. Murch, R. H. Middleton, and S. K. Chalup. Traction Moni-
toring for Collision Detection with Legged Robots. In RoboCup 2003 Symposium,
Lecture Notes in Artificial Intelligence. Springer, 2004. to appear.

10. T. Röfer, I. Dahm, U. Düffert, J. Hoffmann, M. Jüngel, M. Kallnik, M. Lötzsch,
M. Risler, M. Stelzer, and J. Ziegler. GermanTeam 2003. In 7th International
Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences),
Lecture Notes in Artificial Intelligence. Springer, 2004. to appear. more detailed
in http://www.robocup.de/germanteam/GT2003.pdf.

11. T. Röfer and M. Jüngel. Vision-Based Fast and Reactive Monte-Carlo Localization.
IEEE International Conference on Robotics and Automation, 2003.

12. T. Weigel, A. Kleiner, F. Diesch, M. Dietl, J.-S. Gutmann, B. Nebel, P. Stiegeler,
and B. Szerbakowski. CS Freiburg 2001. 2003.

13. K. Yoshida, H. Hamano, and T. Watanabe. Slip-Based Traction Control of a Plan-
etary Rover. In Experimental Robotics VIII, Advanced Robotics Series. Springer,
2002.


