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Abstract: In this paper we describe a sound source localization approach which, in combination
with data from lidar sensors, can be used for an improved object tracking in the setting of an
autonomous car. After explaining the chosen sensor setup we will show how acoustic data from
two Kinect cameras, i.e., multiple microphones, which were mounted on top of a car, can be
combined to derive an object’s direction and distance. Part of this work will focus on a method
to handle non-synchronized sensory data between the multiple acoustic sensors. We will describe
how the sound localization approach was evaluated using data from lidar sensors.
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1. INTRODUCTION

The ability to quickly detect and classify objects, espe-
cially other vehicles within the surrounding is crucial for an
autonomous car. However, cluttered environments, occlu-
sions and real-time constraints under which autonomous
vehicles have to operate let this task remain a key-
challenge problem. In recent years, tremendous progress
has been made in the field of self-localization, world mod-
eling and object tracking, mainly thanks to lidar, radar,
and camera based sensors but also because of algorithmic
advances, e.g., how to model uncertainties [Thrun (2005)]
and how to apply these methods to sensor fusion [Schnuer-
macher (2013)], or how to train object classifiers using
machine learning techniques [Mitchell (1997)]. In the past,
acoustic sensors have played a minor part in robotics,
especially in autonomous driving or for outdoor robotics in
general only. One reason for this might be the omnipresent
noise in most city road traffic and outdoor scenarios and
the domination of other sensors like lidar, camera, or radar.
In this paper we want to present how an autonomous ve-
hicle can localize other vehicles in a real-world road-traffic
environment. For this task we wanted to use low-cost off-
the-shelve microphone arrays like the ones provided in a
Microsoft Kinect camera. Since it is usually hard to deter-
mine the euclidic distance to an object with acoustic data,
we will to focus on angular direction approximation. This
data can still be very helpful, especially when combined
with data from other sensors, e.g., lidar data from laser
scanners. One possible scenario, even though not pursued
in this work, would be to localize the direction at which
an emergency vehicle was detected and then to assign this
direction to a tracked object using lidar data. Another
challenge in our scenario are the moving sound sources
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and comparably high velocities of other vehicles, in addi-
tion to temporarily occluded, emerging and disappearing
vehicles. The presented solution was implementated on a
real autonomous car using the OROCOS realtime robotics
framework. For evaluation of the algorithm the acoustic
data were synchronized and evaluated with lidar objects
from Ibeo Lux sensors.

2. RELATED WORK

A lot of progress for sound source localization has been
achieved in the speech and language processing commu-
nity, as in [Benesty (2007)] on beam-forming methods, or
for dialog management [Frechette (2012)].

In the robotics community and especially for indoor robots
there are a variety of publications on sound source local-

Fig. 1. Test Car MadeInGermany from Freie Universität
Berlin, the Kinect devices were placed on top of the
roof, in front of the Velodyne HDL 64 lidar sensor.



Fig. 2. The six fields of view for the six lidar sensors Lux
from Ibeo and one of the radar sensors are shown,
facing to the front.

ization available. The interaural time difference method
(IDT) has been widely applied, as in [Liua (2010)]. In [Liu
(2010)] and in [Li (2012)] the generalized cross-correlation
function (GCC) is extended to localize different sound
sources using an array of four different microphones. A fur-
ther approach unsing a four-microphone-array in a room
and time-delay estimates is provided by [Pineda (2010)],
with focus on a geometric analysis and under optimization
criteria. In [Valin (2003)] and in [Valin (2004)], a robot
with 8 microphones was used to localize moving sound
sources. The work of [Markowitz (2014)] gives a broader
perspective on how people can interact with robots by
using speech.

This paper is structured as follows: Section 3 will introduce
the accoustic sensor setup and setup of lidar sensors, which
will be used to evaluate the presented approach. Section 4
will describe the applied and implemented algorithms with
an emphasis towards the sensor fusion method in this
approach. In Section 5 we will perform experiments and
present the results. Section 6 will summarize the approach
and will give an outlook for future work.

3. SENSOR SETUP

As a test platform, we used the autonomous car named
“MadeInGermany” from Freie Universität Berlin, cf.
Fig. 1. The car is fully equipped with a combined lidar
system from Ibeo, including 6 laser scanners, as shown
in Fig. 2, a second 64 ray lidar sensor from Velodyne, in
addition 7 radar sensors for long and short distance per-
ception, at least 5 different cameras for lane marking and
traffic light detection, including a stereo camera system
for visual 3D algorithms, and a highly precise GPS unit.
The car can be operated via a CAN-bus interface, thus,
no further actuators are necessary to operate the throttle
or brake pedals.

Different configurations were tried for the Kinect camera
devices. To be independent from rain or snow and also to
avoid wind noise while driving, we would have preferred
to put the acoustic sensors inside the car. Unfortunately,
the disadvantage of this configuration would have been the
weaker signal strengths as well as signal reflections inside

the vehicle. Therefore, we decided to mount both Kinect
devices outside on the roof of the test platform, see Fig. 3.
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Fig. 3. Kinect sensor setup. (a) the device in the lower left
corner is facing to the front of the car, the other one
to the left. (b) View from above.

3.1 Kinect Sensor

Each Kinect sensor is equipped with four different, non-
equally spaced microphones which are aligned in line,
cf. Fig. 4. As a result of this configuration, only pairs
of microphones are linearly independent. To achive the
highest precision for an angle estimation, we decided to
use the two microphones with the largest distance to each
other, i.e., the two outer microphones on the left and right
side of the Kinect device, depicted in Fig. 4. Another
advantage is that the signal strength for those microphones
is almost equal. This is not necessarily true for the inner
two microphones which are located more inside the kinect
case.

Fig. 4. Kinect microphone configuration, 4 mics are aligned
in a line, we used to two outer mics (gray).

In the next section we want to describe how the sound
source estimation and sensor fusion of the two Kinect
devices was implemented.



Fig. 5. Each shift between the two microphone signals
corresponds to a segment (an interval) of possible
angles, given that shifts can take only integer values.

4. SOUND SOURCE LOCALIZATION

In this section we are going to show how to localize
an object using two microphones only. Furthermore we
will focus on the direction accuracy given all possible
directions. In the second part we will show how the
resulting angular probabilistic distribution functions of
two Kinect devices can be combined. One advantage of this
method will be to constrain the set of possible solutions.

4.1 Calculation for one Kinect with two microphones

Estimation of the sound source using two microphones was
designed straightforward using a cross-correlation function
over the two microphone signals. Given the signal of the
left microphone f and the right one g, for a continuous
signal the cross-correlation function f ? g with respect to
the shift τ can be calculated as:

(f ? g)(τ) =

∫ ∞
−∞

f(t) · g(t+ τ) dt (1)

Since we handle digital signals, for discrete functions the
cross-correlation is calculated similarly with respect to a
given shift n between the two signals f and g:

(f ? g)[n] =

∞∑
−∞

f [m] · g[m+ n] (2)

Now we want to take a look at the real Kinect audio sig-
nals. Both Kinect microphones were sampled with 16800
Hz. For every calculation step we compared 216 data
points from the two signals with a shift n ranging from
-20 to +20. These 216 data points (provided by a module
including the open source libFreenect library) showed to be
sufficient for the cross-correlation calculation and allowed
us to estimate the sound direction with more than 70
Hz. Each shift between the two signals would result in a
certain direction. Regarding the number of possible shifts
between the two signals, the two outer microphones of the
Kinect are about 22 cm apart, we therefore assumed a
base distance of b = 0.22m. With the speed of sound at
vs = 340m

s at sea level and with a sampling rate for each
microphone of fk = 16800Hz, there is a maximum and a
minimum value for possible shifts. These two boundaries

correspond to the sound source being perfectly on the left
or on the right side of the device. The maximum and
minimum shift can be calculated as:

nmax = b · fk · v−1s (3)

=
0.22m · 16.8kHz

340ms−1
(4)

≈ 11 (5)

nmin = −b · fk · v−1s (6)

≈−11 (7)

, resulting in approx. 22 possible values for shifts, making
it sufficient to check these 22 possible shifts. As we will
see later, on a planar surface with two microphones there
are ususally two solutions for each signal shift (except for
nmin = −11 and nmax = 11). Thus, we can map each shift
n to two angular segments (angular intervals) which are
symmetrically located with respect to the connecting line
between the two microphones. The angular segments (or
intervals) are depicted in Fig. 5.

The calculation of the corresponding angle for a given
signal shift is straightforward, too. Given the speed of
sound vs we can translate each shift n into a distance n·vs.
Now we have a triangle with a base length of b = 0.22m
and a known difference of the two other sides of n · vs
towards each other. Since the real distance to the sound
source is unknown, we have to make an assumption, e.g.,
25 m (the result of the calculation converges for higher
distances) and can solve the angle to the object for each
microphone using the Law of Cosines. A geometric sketch
of the triangle is shown in Fig. 6.

Fig. 6. Given the base distance of the triangle, the dif-
ference of the two sides and an assumed far distance
(for drawing reasons the distance here is very close)
to the object, the angles of the object to each micro-
phone can be calculated - and should converge with
increasing distance. Two solutions remain.



Fig. 7. Symmetry of angular distribution for front facing
Kinect (left) and sideways facing Kinect (right). Sym-
metry axis depicted in yellow.

4.2 Sensor fusion of two Kinect devices

Since the two Kinect devices are not synchronized, we
cannot just combine the data of the four outer micro-
phones for triangulation. Moreover, we decided to combine
the resulting probability distributions, cf. Fig. 5 of the
Kinect devices with each other. As mentioned earlier,
the probability of each segment containing the angle to
the sound source is calculated from the cross-correlation
function. Since both Kinect devices are rotated to each
other by 90 degrees, the segment sizes do not match and
thus cannot be combined directly. To overcome this prob-
lem, we subsample the angular segments for each Kinect
with 64 equally-spaced angular segments. In a next step,
after we generate the two equally spaced angular segment
sets, we can combine them by pairwise multiplication
of the probabilities of two corresponding segments, i.e.,
segments that contain the same angles. As a result of
this combination via multiplication, we get a final segment
set which represents the resulting probability distribution
for both Kinect sensors (belief distribution). While each
Kinect device alone cannot distinguish between objects
in front and objects behind (see symmetry depictions in
Fig. 7), after combination with the second sensor, those
symmetries vanish. We show the calculation schematically
in Fig. 8 and a step by step calculation with experimental
data in a real traffic scenario in Fig. 9.

Fig. 8. Schemtatic calculation. The upper two segment sets
result from the two different Kinect sensors. Since the
segment sizes of the two sets are not equally aligned
with respect to each other, we need to subsample them
seperately into two segment sets with 64 equally sized
segments. In a next step, they can be combined via
pair-wise multiplication into a final segment set.

After sensor fusion, the resulting segment set corresponds
to a probability distribution (belief distribution) of pos-
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Fig. 9. Illustration of the approach, sound source vehicle
in the upper right corner. Segment lengths correspond
to cross-correlation amounts of the underlying signal
shift and can be interpreted as a probability for the
sound source lying in that angular interval. (a) Non-
uniform segments for front facing Kinect and (b) left
facing Kinect; (c) uniform (equally spaced) segments
for front facing Kinect after subsampling, (d) uniform
segments for left facing kinect; (e) uniform segments
after combining (c) and (d), the resulting probability
distribution (belief) for the sound source direction.

sible directions, i.e., where the sound source is located.
To calculate a discrete value for the most likely direction,
we selected the segement with the highest probability
value assigned and took the mean value of that particular
segment as the resulting angle. There would have been
more sophisticated methods, e.g., integrating over different
segments; also we thought about how to calculate direc-
tions to multiple sound sources but left this open to future
research work.

5. EXPERIMENTAL EVALUATION

As mentioned above, the proposed algorithm was im-
plemented for our autonomous vehicle and tested in a
real traffic scenario. The algorithms were tested within
a modular robotics framework, the Open Robot Control
Software Project Orocos (2011) under an Ubuntu 12.4.
64bit operating system. The data from both Kinect sensors
were integrated into our AutoNOMOS software project
and time stamped to compare them with our lidar sensory
data. The six lidar Lux sensors from Ibeo run with a
frequency of 12.5 Hz, the Kinect sensors ran with 70 Hz.



5.1 Test scenario

We tested our approach in a Berlin traffic scenario, close to
the campus of the Freie Universität Berlin. Because driving
the car was causing a lot of wind noise, we decided to park
the car on the road side of the Englerallee, a medium-
sized traffic road with trees, parked cars and houses on
the side. Vehicles on the street were maintaining a velocity
of 50-60 km/h (approx. 35 mph). Since there are trees
on the middle strip seperating the two road lanes, cars
of the more distant lane were partially occluded by trees
while passing. We were interested in the angular accuracy
of our approach in comparison to object angles from the
lidar sensor. Therefore, data from the lidar sensor (a point
cloud) was clustered into 3d-objects and tracked over time,
resulting in a position and velocity vector for all clustered
lidar objects. Since we were interested in moving (non-
static) objects only, we compared the calculated angle from
audio data to the closest angle of a moving object (from
lidar).

5.2 Experimental results

In Fig. 10 we evaluated the angular error over time. We
therefore took more than 5000 measurements, the resulting
error-over-time function is depicted in Fig. 10.
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Fig. 10. Experimental evaluation: Difference between the
angle from Kinect data to lidar data over time, 5000
data points were recorded. The standard deviation for
the difference is σ = 10.3 degrees.

We also plotted the angular errors over all distances to
the objects, as can be seen in Fig. 11. What is interesting,
the highest angular errors occurred not for the farest
objects but for objects within medium distances. One
explanation could be that objects very far away would
occupy a very small angular segment in the laser scanner,
while objects closer occupy larger angular segments. Since
the laser scanner always takes the center point of the
detected object as a reference, and since the Kinect sensor
will receive the loudest noise from the closest part of the
vehicle, which is usually not the center of a car but the
approaching front or leaving rear, this might be one reason
for an increased detection error. Another reason could be
increased reflection of noise on houses or trees for certain
distances, which need further analysis.

In Fig. 12 we plotted the standard deviation of the angular
error for different distance intervals, which showed the
same result in terms that medium distances generated the
highest error rates. The calculation time of the algorithm
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Fig. 11. The angular error over different object distances
(measured by lidar). Higher error rates occured for
medium distanced objects.

was negligible so that all experiments were performed
under realtime constraints
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Fig. 12. Angular detection error for different distance
intervals. While for high distances the angular error
standard deviation was about 9 degrees, for medium
distances it was approx. 15 degrees.

6. CONCLUSION

We presented, implemented and tested an approach which
allows a road vechicle, equipped with to off-the-shelve
Kinect cameras to localize objects in a distance of up to
50 meters and with a velocity of 50-60 km/h. We showed
how to combine probabilistic density functions from two
Kinect microphone devices using equally spaced angu-
lar interval segment sets, which helped to disambiguate
possible angular locations while keeping the whole belief
distribution. The algorithm can easily perform under real-
time constraints with a frequency of 70 Hz. We also showed
how the acoustically derived angle to the sound source
could be assigned to moving objects from lidar sensors.

6.1 Future work

Future work needs to focus on localization and tracking
of multiple objects, since in real traffic scenarios there
are usually multiple vehicles in close proximity. Handling
wind noise will be a crucial and challenging task for sound
localization while in motion. Noise reflections on trees,



buildings and cars provide another challenge. Distance
estimation, at least to some extend could support the data
fusion problem with objects from other sensors. Band pass
filters, e.g., application of Fast Fourier Transformation
(FFT) shall be considered in future works. FFT can
help to select specific signals, e.g. emergency vehicles
with certain signal horn frequencies and signal patterns.
Here the detection of alternating sound frequencies, as for
emergency horns, would be helpful, too. Another research
path worth following could be acoustic object tracking and
velocity estimation, taking advantage of the doppler effect,
i.e., the change of a frequency spectrum for an approaching
or leaving vehicle.
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