Acoustic/Lidar Sensor Fusion for Car Tracking in City Traffic Scenarios

Hamma Tadjine, Daniel Goehring

Hamma Tadjine 08. September 2015

Motivation

- Direction to Object-Detection: What is possible with costefficient microphone arrays, e.g. from Kinect?
- Fusion of multiple non-synchronized Kinect audio sensors and evaluation with data from Lidar sensors
- Application of the solution in real-world traffic scenarios

Contribution

- Main components:
 - audio-based detection of objects for a single Kinect microphone array
 - creation of a representation for the belief distribution of object directions
 - combination of belief distributions of two Kinect microphone arrays
 - implementation on a real autonomous car using the OROCOS framework
 - synchronization and evaluation of the algorithm with Lidar point cloud from Ibeo Lux sensors

Test platform

- Vehicle: VW Passat Variant, modified by VW
- Drive- and Steer-by-Wire, CAN
- Positioning system: Applanix POS LV 510
 - IMU, odometer, correction data via UMTS
- Camera systems:
 - 4 Wide angle cameras
 - 2 INKA Cameras (HellaAglaia)
 - 2 Guppy Cameras for traffic light detection
 - Continental Lane Detection
- Laser scanner:
 - IBEO Lux 6-Fusion System
 - 3D Laser scanner: Velodyne HDL 64 E
- Radar systems:
 - 2 short range (BSD 24 GHz)
 - 4 long range (ACC 77 GHz)
 - 1 SMS (24 GHz)

Hamma Tadjine 08. September 2015

Kinect sensor (Schematic)

- 4 microphones, only the left and right outer microphones were used in our approach (gray circles)
- outer microphone distance: approx 22 cm

Hamma Tadjine 08. September 2015

Signal shift calculation via crosscorrelation

• For continuous signals f and g holds:

$$(f \star g)(\tau) = \int_{-\infty}^{\infty} f(t) \cdot g(t + \tau) dt$$

• For discrete signals f and g holds:

$$(f \star g)[n] = \sum_{-\infty}^{\infty} f[m] \cdot g[m+n] \quad \textcircled{000} \quad \textcircled{0}$$

• We are interested in the delay *n* between the two discrete microphone signals:

$$n_{delay} = \max_{n} (f \star g)[n]$$

Hamma Tadjine 08. September 2015

Time delay between to Microphoness

- the two microphones provide audio signals with a sampling rate of 16.8 kHz
- the time difference for a signal approaching the two microphones is

$$\Delta t = n_{delay} \cdot 16.8 kHz$$

, which translates, given the speed of sound (340 meters per second), into a distance difference of:

$$\Delta s = n_{delay} \cdot 16.8 kHz \cdot 340 \frac{m}{s}$$

Hamma Tadjine 08. September 2015

Time delay between to Microphoness

- the two microphones have a distance of 0.22 meters (base distance)
- given the base distance, and the signal shift, for an assumed distance of the object (far away, e.g. 25 m) we have a defined triangle
- we can calculate the **angle** to the object w.r.t. symmetry
- on a plane, two solutions remain

Distribution of possible angles to object

- sampling frequency is limited to 16.8 kHz
- for a given base distance of the two microphones (0.22 m) and a given signal shift, we can have only:

2 * 0.22 m * 16.8 kHz / 340 m ≈ 22

possible discrete outcomes for angular directions \rightarrow approx. 46 different angular segments (with symmetry)

Angular segment distribution

- different segments (46) cover different angular intervals
- each segment can be interpreted as a belief cell for an object in an angular direction interval
- radius for each segment will represent crosscorrelation value (belief)

Combination of Kinect sensors

- Symmetry disambiguation on a plane can be achieved with two Kinect (each 2 microphones),
- Both devices are rotated by 90 degrees towards each other
- Kinect 1 can distinguish between left and right but not between front and rear direction
- Kinect 2 can distinguish between front and rear but not between left and right direction

Combination of Kinect sensors

- Symmetry disambiguation on a plane can be achieved with two Kinect microphone pairs, which are oriented by 90 degrees towards each other
- For fusion, we subsampled the two non-equally spaced histograms into two qually spaced histograms
- The value of each non-uniform belief cell is assigned to (split into) the uniform belief cells covered (fully or partially covered)
- Combination of both kinect belief distributions via

cell-wise multiplication

Subsampling of belief cells and fusion for two Kinect sensors

Hamma Tadjine 08. September 2015

Traffic Example

Kinect facing to the front, length of each (non-equal) angular segment represents angular belief

Passing car, Lidar data

Hamma Tadjine 08. September 2015

Traffic Example, Step by Step

Kinect facing to the front

Kinect facing to the side

front/rear symmetry (yellow axis) left/right symmetry, (orange axis)

Hamma Tadjine 08. September 2015

Traffic Example, Step by Step

Hamma Tadjine 08. September 2015

Acoustic/Lidar Sensor Fusion for Car Tracking

Traffic Example, Step by Step

Hamma Tadjine 08. September 2015

Object Direction calculation

- What is the angle to the object?
 - After fusion, angular segment with the highest value wins (maximum likelihood)
 - Drawback: only one direction possible
 - For multiple objects it would be possible to search for multiple large angular segments (not too close to each other)

Experimental setup

- Approach was tested in our autonomous car in a real traffic situation
- driving the car created much wind noise → car was parked on the side of the read, passing vehicles were detected

Hamma Tadjine 08. September 2015

Experimental evaluation

- Lidar scanner from Ibeo Lux (6 scanners) used to evaluate accuracy of sound source localization
- Idea: compare the angle calculated using audio data with the closest angle of moving obstacles from using Lidar
- Lidar objects were clustered and tracked from point cloud data

Demo: Video 1 and 2

Hamma Tadjine 08. September 2015

Hamma Tadjine 08. September 2015

Experimental results

angular error standard deviation: 10.3 degrees

Hamma Tadjine 08. September 2015

Experimental results (contd.)

Angular error over distances w.r.t. Lidar data

Experimental results (contd.)

Angular error over distances

Hamma Tadjine 08. September 2015

Experimental results (contd.)

- for close objects it is usually hard to tell the exact angle, due to their size – therefore the error for more distant objects was often smaller than for close ones
- other inaccuracies were caused by sound reflections on houses and trees close to the street
- errors caused by limited sound velocities in combination with high velocities of cars could not be measured → city traffic 50 km/h

Conclusion

- we presented an approach to calculating angles to objects using accoustic data from 2 Kinect microphone pairs
- showed how data from two non-synchronized devices can be combined using subsampled and uniform angular interval segments
- Detected angles were assigned and compared to real world Lidar data
- Approach was implemented on a real autonomous car robotics modular framework (OROCOS) and tested in a real world traffic situation

Future Work

- Current challenges wind noise while driving
- How to keep track of multiple sources
- How to handle sound reflections, e.g. from buildings, trees, etc.

Future Work (contd.)

- How can the signal intensity used for distance estimation
- Band pass filters / FFT can help to select specific signals, e.g. emergency vehicles with certain signal horn frequencies and signal patterns – furthermore try to detect alternation between two frequencies
- Use tracking in combination with doppler effect to estimate velocities while vehicle is passing (change in frequency)