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Learning to detect visual grasp affordance
Hyun Oh Song, Mario Fritz, Member, IEEE, Daniel Goehring, and Trevor Darrell

Abstract—Appearance-based estimation of grasp affordances
is desirable when 3-D scans become unreliable due to clutter
or material properties. We develop a general framework for
estimating grasp affordances from 2-D sources, including local
texture-like measures as well as object-category measures that
capture previously learned grasp strategies. Local approaches
to estimating grasp positions have been shown to be effective
in real-world scenarios, but are unable to impart object-level
biases and can be prone to false positives. We describe how
global cues can be used to compute continuous pose estimates
and corresponding grasp point locations, using a max-margin
optimization for category-level continuous pose regression. We
provide a novel dataset to evaluate visual grasp affordance
estimation; on this dataset we show that a fused method
outperforms either local or global methods alone, and that
continuous pose estimation improves over discrete output models.
Finally, we demonstrate our autonomous object detection and
grasping system on the Willow Garage PR2 robot.

Note to Practitioners—Learning grasp affordances for
autonomous agents such as personal robots is a challenging
task. We propose an unified framework which first detects
target objects, infers grasp affordance of the target object, and
executes robotic grasp. Our method is mainly based on 2D
imagery data which can be more robust when 3D scans are
unavailable due to background clutter and material properties
such as surface reflectance. One of the future extensions would
be to automate the training phase so that robots can actively
learn object models by interacting with objects as opposed to
having a human in the loop collecting and annotating training
images.

Index Terms—Object detection, Machine learning, Pose esti-
mation, Affordance, Grasping, Autonomous agent.

I. INTRODUCTION

AFFORDANCES are believed to be one of the key con-
cepts that enables an autonomous agent to decompose

an infinite space of possible actions into a few tractable and
reasonable ones. Given sensor input, resemblance to previous
stimuli – both at an instance and category level – allows us
to generalize previous actions to new situations. Gibson [10]
defined affordances as “action possibilities” that structure our
environment by functions of objects that we can choose to
explore. In particular, grasp affordance captures the set of
feasible grasp strategies which might be available to the agent
when presented with previously unseen objects.

In the context of robotics, this concept has attained new
relevance, as agents should be able to manipulate novel
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Fig. 1: PR2 robot grasping a previously unseen cooking pot
placed on a cluttered scene fully autonomously.

objects. Early models proposing a computational approach
for predicting affordance functions started from a geomet-
ric paradigm [32]. A number of different implementations
[24, 28, 29] of this idea have been attempted, but often suffer
from the fact that matching primitives in real-wold settings can
be challenging. In this paper we explore the direct inference
of grasp affordances using monocular cues.

Research in the robotics field has for some time developed
grasp strategies for known objects based on 3-D knowledge
on an instance basis [11, 13]. In cases where clutter or
material properties preclude extraction of a reliable point
cloud for a target objects, appearance-based cues are desirable.
Recently, methods for generalizing grasps using 2-D or 2.5-D
observations have been proposed [2, 15, 16, 18, 19, 23, 26, 27].
This new class of methods reflects the traditional goal of
inference of grasp affordance.

But typically, these “graspiness” measures have been com-
puted strictly locally [15, 18, 26], without identifying the
object to be grasped and thus doesn’t leverage any larger
image context. Models which find grasp points based only
on local texture classifier models cannot capture category or
instance-level bias, and therefore may break an object (fragile
wine glass grasped from the top), trigger an unintended side-
effect (grasping spray bottle at the trigger), damage the gripper
(not grasping potentially hot pot at handle), simply acquire
an unstable grasp [9], or be incapable of recognizing and
fetching specified objects of interest. We propose a method
for combining such local information with information from
object-level pose estimates; we employ category-level contin-
uous pose regression to infer object pose (and from that, grasp
affordances). Also, we develop a grasp inference method using
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pose estimates from a max-margin regression technique, and
show this strategy can significantly improve performance over
discrete matching methods.

Previous methods have not, to our knowledge, addressed
pose regression for inferring grasp affordances. This is mainly
a result of the difficult interaction of intra-object category
variation interleaved with changing pose, which makes it hard
to learn and generalize across instances and view-points in a
robust manner. Only recently, pose estimation under category
variation has been attempted for discrete view-point classes
[12, 20, 22, 25]. In order to leverage larger contexts for
improved grasp affordance, stronger models for pose estima-
tion are needed; we employ continuous, category-level pose
regression.

Our work provides the following contributions: 1) we
propose a fully autonomous robotic object grasping system
by combining texture-based and object-level appearance cues
for grasp affordance estimation; 2) we evaluate max-margin
pose regression on the task of category-level, continuous pose
estimation; and 3) we collect and make available a new dataset
for image-based grasp affordance prediction research.

II. RELATED WORK

Learning visual affordances for object grasping has been
an active area of robotics research. This area of research has
been approached from several fronts, including: 3D model
based methods [3, 5, 21], learning local graspable 2D or
2.5D patches [2, 14, 15, 18, 26, 27, 30]. However, there has
been less attention towards learning to grasp objects by first
recognizing a semantic object category, estimating object pose
and applying category specific grasp strategies learned from
supervised training.

[30] took a step towards this approach of learning category
specific grasp affordances and proposed a method using a
code book based detection [17] model to estimate object grasp
affordances from 2D images. However, the experiments were
limited to only one object class and the object pose was not
estimated by the algorithm requiring hard coded grasp poses.

Recently [12, 22] proposed max-margin pose estimation
methods based on the state of the art object detection system
[7, 8] enabling simultaneous detection and pose estimation.
However, the detection and pose estimation performance
haven’t been evaluated when the object is not centered in the
image and object category is unknown.

Overall, in contrast to the previous approaches, our system
performs combined end to end inference of recognition, pose
estimation, affordance estimation and grasping. We demon-
strate fully autonomous object detection and grasping on PR2
robot.

III. METHODS

We develop a method for grasp affordance estimation that
uses two paths: a local pipeline inspired by the framework of
[26], which models grasp affordance using a local texture cue,
and a global pipeline, that utilizes object-level regression to
estimate object pose, and then regresses from object pose to
grasp regions. For the global path, we extend the framework

proposed in [12] to the task of category-level continuous
outputs, as those are what is needed in our task. Figure 2
illustrates how the two pipelines interact in our framework.

The local and global grasp estimates are fused in a prob-
abilistic framework. In the experimental section, we will
show that this integrated model outperforms its individual
components. Informally, we consider the global detector to
be exploiting object-level information to get the estimate “in
the ballpark”, where the local detector could bring the final
estimate to be aligned to a good edge based on the local
“graspiness”.

In the following subsections, we address components of the
system in detail. Section III-A discusses the key ingredients
in the local pipeline. Then, section III-B explains the global
pipeline. Finally, section III-C describes the probabilistic fu-
sion process of the two pipelines.

Global Pipeline Local Pipeline 

Bounding  
    Box 

Category  
   Label 

Pose Global Grasp  
    Estimate 

Local Grasp            
   Estimate 

Fused Grasp  Estimate 

Fig. 2: The block diagram of the complete system. Local
and global information is fused to a joint grasp estimate. In
addition, the local pipeline is improved by bounding box and
category label predictions from the global pipeline.

A. Local grasp region detection
Saxena et al. [26] train a local grasp patch detector that

looks at local patches and classifies them either as valid grasp
patches or not. They propose a binary classification model
trained on local patches extracted from synthetic supervised
data; the model identified grasp points from a local descriptor
that is similar to a multi-scale texture filter bank, but with
some differences (see [26]). Our analysis shows that the model
learns a set of local edge structures that compose a good grasp
patch such as the handle of a mug reasonably well.

Since local grasp measures operate based on local ap-
pearance, they lack specificity when run on entire images.
In their operational system this is mitigated by restricting
response to the known (or detected) bounding box of the target
object in the image. They also employ a triangulation step
for verification with stereo sensors, which we do not apply
here as our data set is monocular.1 The pure local method

1We are interested both in detecting grasp affordances with robotic sensors,
and also doing so from general image and video sources, so as to improve
scene understanding in general and/or to improve estimation of other objects
or agents in the world. E.g., we can constrain our estimate of the pose or
motion of a person if we can infer how he or she is holding an object, or
how they will grasp it if they are approach the object. (C.f., [33]).
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cannot capture category or instance-level bias such as a human
demonstration of a grasp strategy for a category of interests.

Figure 3 shows example images annotated with “grasp
region” attributes (handle of cooking pot, mid part of markers,
etc.). We define grasp regions as where humans or robotic
agents would stably and safely grasp objects. Along with
the grasp region attributes, we also annotated “grasp scale”
attributes for all the training instances that are used in fea-
ture extraction stages. More explanations on the annotation
attributes are given in the following subsections.

We address some important technical details of the local
method in [26] and propose modifications employed in our
local grasp measure classifier which lead to more reliable
responses. Subsection III-A1 provides the algorithm and visu-
alizations from feature extraction steps to inference and post
processing steps of the local method and subsections III-A2
and III-A3 introduces improvements to the algorithm.

1) Feature extraction and inference: Figure 4 (left) shows
a visualization of a SIFT (Scale-invariant feature transform)
descriptor at [31] three different scales on an example key-
point. Each bin shows local statistics of gradient orientations.
For training, we train a patch level binary classifier wL with
positive and negative training data as shown in Figure 6. For
inference, we first compute a SIFT representation of the test
image Ψ and convolve it with the learned classifier wL to get a
local grasp affordance map L followed by Gaussian smoothing
as shown in Eq. 1.

L = Ψ ∗ wL ∗ k (0, σI) , (1)

where k (0, σI) is a truncated zero mean Gaussian blur kernel.
Figure 4 (middle) shows the classifier response for all
uniformly sampled test keypoints. Regions with classification
confidence greater than 0.5 are overlaid in the red channel
of the image. Figure 4 (right) visualizes the result where
Gaussian smoothing is applied on the classifier output. We
set the standard deviation of the Gaussian kernel equal to
the keypoint grid sample size throughout the experiment.
We tried both SVM (support vector machine) and logistic
regression classifiers and they showed negligible difference
in performance.

Extracting good (easy to learn and unambiguous) training
patches from real camera images requires more precautions
than extracting the data from synthetic graphics data [26].
Some of the issues that arise from working with real sensor im-
agery involve: alignment difficulties in experiments, incorrect
annotations, wide varieties across object instances, presence
of texture on object surfaces, and realistic lighting conditions,
etc. Subsections III-A2 and III-A3 addresses some of these
issues in more depth.

2) Supervised key point sampling: One of the most com-
mon techniques for sampling key points for feature extraction
is sampling evenly in a grid structure as implemented in [26].
However, this method is very susceptible to binning effects and
ambiguities in training data. The binning effect is when small
object displacement can cause very different data samples and
is an inherent problem when data is sampled in grid structures.
Figure 5 shows difficulties of this approach. We avoided this

Fig. 5: Issues of keypoint even-sampling strategy. (Top) Vi-
sualization of evenly sampled keypoints for a cooking pot.
Yellow circles denote each keypoints. Green band represents
ground truth grasp region annotation in the center of the
handle. (Bottom) Close up view near the annotated region.
Due to binning effect, it becomes ambiguous which keypoints
should get assigned with positive/negative grasp regions labels.
Arbitrary assignment causes outliers in the training process.

problem by uniformly sampling positive patches along the
ground truth grasp bands as shown as green circles in Figure
6.

The label ambiguities can occur if key points that are very
close together get sampled and assigned to different labels. In
the binary classification sense, these ambiguous data can be
interpreted as inseparable data points in feature dimensions
that adversely effect the separating hyperplane. Our approach
is to utilize an additional annotation which we call the “grasp
scale” attribute of the grasp annotations to define a convex
hull around the ground truth grasp region and randomly sample
negative key points outside the convex hull. Figure 6 illustrates
the convex hull as red polygon and randomly chosen negative
key points as red circles.

3) Category dependent descriptor scale: While the method
above determines key point sampling locations, the scale of
the descriptor turns out to be an important factor in order
to obtain reliable local grasp measures. This relates to the
aperture problem as encountered in the scale of local features.
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Fig. 3: Randomly sampled examples of our dataset with grasp annotations. Grasp region attribute is defined by two end points
(magenta patches in the figures). We take convex hull of the two points as valid grasp region except for the bowl category.

Fig. 4: Local grasp region detection. (left) SIFT descriptor on a key point. Descriptor scales are color coded with yellow, green
and blue (middle) Red patches indicate thresholded classifier output. (right) Visualization after Gaussian smoothing.

Fig. 6: Example of supervised key point sampling. Positive key
points(green markers) are sampled along “grasp region” anno-
tation while negative key points(red markers) are randomly
sampled strictly outside the convex hull defined by “grasp
scale” annotation.

Having a small local scale results in features that encode edge
type responses and tend to be reproducible. For larger scales,
we add more context which makes the feature more unique
and therefore also more discriminative. The best scale will
therefore naturally vary from object class to object class. E.g.
with a set of fixed size descriptors (aperture), it’s impossible
to capture both the parallel edges from narrow handle of mugs
and wide handle of cooking pots. This holds true for the
largest context descriptors also. We again utilize the “grasp
scale” attribute of the grasp annotations and set descriptor
scales dependent on the attribute. Note that at test time, the
grasp scale is derived from the bounding box and object class
provided by the global pipeline as shown in Figure 2.

B. Global grasp region regression

Our global path is based on a method for category-level
continuous pose regression. We start with the model in [12],
which reports results on continuous pose regression over
trained instances and on discrete pose estimation from cat-
egory level data. We extend it here to the case of category-
level continuous pose estimation, which to our knowledge has
not been previously reported by this or any other method for
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general object classes2. In subsection III-B1 we review the
pose estimation model and in subsection III-B2, the conversion
process from pose to grasp affordance estimate is discussed.

1) Pose Estimation: A multi-scale window scanning is
applied to localize objects in the image, searching across
category and pose. First, we define discretized canonical
viewpoints in the viewing hemisphere as illustrated in Figure
7. Then, following [12] and [7, 8], we define a score function,
Sw(x) ∈ R of a image window x ∈ Rm evaluated under the
set of viewpoints as following,

Sw(x) = max
v∈V,∆θ

f(x, v,∆θ)

= max
v∈V,∆θ

(
wv + JTv ∆θ

)T
ψv(x)− d(∆θ)

θ(x) = θv∗ + ∆θ∗

(2)

where v = {1, . . . , V } correspond to viewpoint indices sam-
pled from the viewing hemisphere at V different locations,
wv ∈ Rm are learned viewpoint templates. ψv(x) ∈ Rm is
the SIFT feature vector computed on window x of the input
image.

θv ∈ R3 is the supervised Euler angle annotation at
viewpoint index v. ∆θ represents small deviation angle from
the supervised annotation angle θv . The final pose estimate is
the deviation corrected angle θ (x).
Jv ∈ R3×m is the Jacobian matrix of the viewpoint template

wv over the angle θv . The motivation of the Jacobian term is
that we want to slightly deform the learned canonical view
templates by ∆θ. Explicitly, the Jacobian linearization of
vector wv about the canonical view angle θv with respect
to the three Euler angles [θ1, θ2, θ3]T can be written as:

JTv =



∂wv(1)
∂θ1

∂wv(1)
∂θ2

∂wv(1)
∂θ3

... ... ...... ... ...

∂wv(m)
∂θ1

∂wv(m)
∂θ2

∂wv(m)
∂θ3


(3)

The input to the pose estimation algorithm is the test view
x and the output is the pose estimate θ (x) = θv∗ + ∆θ∗

where θv∗ denotes the best matching discrete viewpoint and
the ∆θ∗ denotes the slight deformation from the viewpoint
to the actual test view. d(·) is a quadratic loss function that
confines θ (x) to be close to θv . Denote ∆θ by their elements
[∆θ1,∆θ2,∆θ3]T , then

d(∆θ) =

3∑
i=1

di1∆θi + di2∆θ2
i (4)

In Eqn. (2), v∗ and ∆θ∗ are obtained when the score
function reaches its maximum. The variables wv , Jv , θv

2But see the extensive literature on face pose estimation

Fig. 7: Illustration of the discretized viewing hemisphere and
the pose estimation algorithm. Input to the algorithm is the test
view x and the output is the pose estimate θ(x) = θv∗ +∆θ∗.

and di1, di2 are learned from training data. Given posi-
tive examples {x1,x2, · · · ,xP } with annotated pose labels
{θ1,θ2, · · · ,θP } we can express the above criteria compactly
as a dot product between reparameterized weight vector and
feature vector as follows,

f(x, v,∆θ) = w̃v
T ψ̃v (x) (5)

where w̃v and ψ̃v (x) are structured as following,

w̃v =
[
wT
v , vec (Jv)

T
, d11, . . . , d32

]T
ψ̃v (x) = [ψv (x) ,∆θ1ψv (x) ,∆θ2ψv (x) ,∆θ3ψv (x) ,

−∆θ1,−∆θ2,−∆θ3,−∆θ2
1,−∆θ2

2,−∆θ2
3]T

(6)

where vec (·) operator forms a vector from the input matrix
by stacking columns of the input matrix on top of each other.
We discuss the training and inference procedures for pose
estimation below.

a) Training procedure: We solve the following optimiza-
tion problem in Eq. 7 to jointly train all the view point
templates w1, . . . ,wV in max-margin framework.

min
w̃1,...,w̃V

1

2

V∑
v=1

||w̃v||22 + CN

N∑
n=1

V∑
v=1

max
(

0, 1 + w̃T
v ψ̃v (xn)

)
+ CP

P∑
p=1

max
(

0, 1− w̃T
v(p)ψ̃v(p) (xp)

)
(7)

where xp and xn denote positive and negative training data,
and v(p) denotes the supervised viewpoint label for a positive
data xp. CN and CP are regularization parameters which
controls the tradeoff between the classification performance
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Fig. 8: Overlaid samples of training data for one ob-
ject instance of mug category as yaw angle is varied at
0◦, 180◦, 270◦. Pitch and roll angles are fixed at 45◦ and 0◦

respectively. We use nonparametric locally weighted regres-
sion to learn the mapping between object pose to grasp labels
(illustrated with magenta patches)

on the training data and the norm of the model parameters
{w̃i}Vi=1. The intuition behind the optimization problem in
Eq. 7 is that we want all the view point templates to score
low for all the negative data while the supervised template
w̃v(p) scores high for the corresponding positive data.

b) Inference procedure: Having learned the viewpoint
templates w1, . . . ,wV , we can perform sliding window style
object detection which assigns score Sw (x) at every image
locations x. After thresholding the score, we can infer the
viewpoint estimate θ (x) of the object hypothesis.

[v∗, ∆θ∗] = argmax
v, ∆θ

f (x, v,∆θ)

θ (x) = θv∗ + ∆θ∗
(8)

The intuition behind Eq. 8 is that we want to infer the most
likely pose of an object hypothesis location x by maximizing
over possible discrete view point labels v and angle deforma-
tion ∆θ.

2) Pose to Grasp Affordance Regression: Given pose esti-
mates, θ (x) we can directly infer grasp regions. The global
affordance prediction step works by regressing upon the pose
of an object to a 2D affordance in the image plane. (The local
detector simply identifies points in the image that have the
local appearance of graspable region; this is complementary
information.) Regressing from pose and category information,
the global pipeline infers the grasp affordance annotations in
Figure 3. This can be formulated as learning multidimensional
regression functions h (θ; c) that maps a 3D pose estimate θ
to a grasp label g in pixel coordinates given a category label c
and assigns probability estimate on the likelihood P (g|θ, c).
Explicitly, g = [g1,g2] where g1 ∈ R2, g2 ∈ R2 are
individual end points in grasp region labels in pixel coordinates
illustrated as magenta patches in Figure 3. We use locally
weighted regression to learn the regression functions from the
training data for each categories. Figure 8 illustrates a sample
trajectory of g as θ is varied. Then, we marginalize over the
candidate pose estimate in order to obtain a robust grasp point
prediction:

g∗ = argmax
g

∑
θ

P (g|θ, c)P (θ|c), (9)

where g∗ is the predicted most likely grasp region, angle θ =
[θpitch, θyaw, θroll]

T is the Euler angle pose estimate and c is
the category label. Then the global grasp affordance map G
is determined by the following procedure.

G = convHull (g) ∗ k (0, σI) (10)

where we take the convex hull of the predicted grasp estimates
and convolve with the truncated zero mean Gaussian kernel
k (0, σI) with standard deviation σ set equal to the one used
in the local pipeline.

C. Fused grasp region estimates

The position of the final estimate is based on fusion of
local and global paths. Position and orientation estimates are
represented as a probability density function over location and
angle, respectively, and multiple hypotheses can be returned
as appropriate. The local and global paths each provide a
probability map over estimated grasp location in the image.
We return the fused estimates, taking the entrywise product
of the two probability map and taking argmax to be the fused
estimate.

a∗ = argmax (G ◦ L) , (11)

where ◦ denotes matrix Hadamard product, a∗ is the fused
grasp region with maximal confidence, G is the global grasp
affordance, L is the grasp likelihood map from the local
pipeline.

Figure 9 shows some examples where our fusion scheme
successfully recovers from failures in either the local or the
global pipeline. Figure 9 (a) and (d) show the output of the
global pipeline and Figure 9 (b) and (e) show the top scoring
patches from the local measure. The first row shows erroneous
global grasp estimate due to incorrect pose estimate getting
corrected by fusion step owing to correct local estimate. The
second row shows the global pipeline not begin affected by
poor local estimate during the fusion step.

D. Generating 3D grasp points

Grasping an object requires knowledge of the 3D coor-
dinates (x, y, z) of a grasping point, and the 3 orientation
angles (θyaw, θpitch, θroll) to specify the gripper orientation.
The (x, y, z) coordinates of the grasping point are obtained
by projecting the (u, v) coordinates of a pixel to a calibrated
range sensor. For our experiments we used an Asus Xtion
camera mounted on the head of a PR2 robot.

Finding the gripper angles requires constraining the
(θyaw, θpitch, θroll) orientation angles. The first two angles
(θyaw, θpitch) is calculated by the pose estimation algorithm,
as illustrated in Fig. 7. In this work we assume that an object
has 0◦ roll angle and therefore can be grasped either from
the top or from the side. This is true for most of household
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(a) Incorrect global estimate (b) Correct local estimate (c) Fused estimate

(d) Correct global estimate (e) Incorrect local estimate (f) Fused estimate

Fig. 9: Individual failures corrected by the probabilistic fusion. Best viewed when zoomed in.

objects that have to stand upright on a tabletop surface. The
information about what approach to use is provided during
training.

Choosing an overhead or a side grasp simultaneously con-
strains both θroll and θpitch, thus specifying all the needed
parameters to determine the desired gripper position. Execut-
ing the grasp then requires planning a collision free motion
to a pre-grasping position, and closing the gripper around the
specified target. We exploited the redundancy of the PR2 arm
(7 DOF), to find grasping postures that do not collide with the
tabletop surface.

IV. EXPERIMENTS

We performed two sets of experiments. Experiments in
section IV-B compares the detection performance between
approach and 3D baseline. The set of experiments in section
IV-C are designed to extensively evaluate various aspects
of our approach in terms of detection, categorization, pose
estimation, grasp affordance prediction, and robotic grasping.

A. Dataset for Evaluating Visual Grasp Affordance Prediction
under Categorial Variation

Datasets for learning 2D and 2.5D grasp locations exist [18,
26]. However the number of images and pose varieties in the
dataset are quite limited (total of 1035 images for 9 object
categories) in order for one to learn object detector models
from. Furthermore, pose annotations for the images are not
provided in the dataset.

Existing datasets with pose annotated visual categories only
address discrete view point classes [25]. We are only aware
of a single exception [20], which only has a single category
(car) and also doesn’t lend itself to the investigation of grasp
affordances.

Therefore we propose a new dataset consisting of 8 ob-
ject categories (markers, erasers, spray bottles, bowls, mugs,
pots, scissors and remote controllers) common to office and
domestic domain for each of which we imaged 5 instances at
1280 × 960 resolution. The training set shows the instances
under 259 viewpoint variations (pitch angle: 0 ˜ 90◦ sampled
at 15◦ each, yaw angle: 0 ˜ 350◦ sampled at 10◦ each) yielding
a training set of total size of 10360 images. All the images
in the dataset also have the grasp affordance annotations with
grasp region and scale attributes mentioned before. Figure 3
shows subset of our dataset.

As for test sets, we collected two sets of data. On the first
set, we collected 8 instances per category of previously unseen
objects both in an uncluttered desk and a cluttered desk. On
this dataset, we evaluate our detection performance against an
established baseline system using 3D modalities [1]. The other
testset contains 18 viewpoint variations per categories as well
as significant scale changes of previously unseen instances
in cluttered background. We show experimental results on
detection, categorization, pose estimation and grasp affordance
estimation.

B. Detection performance comparison against 3D baseline
We chose the highest scoring detections in the image across

all the categories and followed the standard object detection
criteria where a predicted bounding box is considered a true
positive detection if the ratio between the intersection and the
union of the predicted and ground truth bounding box is more
than 50% [6]. Table 1 shows the detection accuracies on both
the clean and cluttered desk scenes compared against the 3D
baseline [1].

Figure 10 shows some failure cases of the baseline 3D
detection system [1]. In Figure 10 (b),(d) show failed 3D
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(a) Overlayed detections (b) 3D detection (c) Overlayed detections (d) 3D detection

Fig. 10: Example failure cases of 3D [1] versus 2D detection. (Left column) Red, green, and yellow bounding boxes indicate
ground truth, 2D detection, and 3D detection bounding boxes respectively. (Right column) Visualization of the 3D detection.

Scenes Methods Category averaged detections

Clean scene Ours 96.9 %
3D 65.6 %

Cluttered scene Ours 81.3 %
3D 3.10 %

TABLE I: Detection accuracy comparison on both scenes.
“3D” indicates [1] and “Ours” is the proposed method

detection bounding cubes and Figure 10 (a),(c) show overlayed
detections. The red bounding boxes are the ground truth, the
green bounding boxes are output of our system and the yellow
boxes are the 3D detection overlayed onto the image plane.

Generally, when textured light is shed on dark colored or
weakly reflective objects, the color contrast from the textured
light is very small causing a very sparse point cloud. The
sparsity then segregates points cloud into multiple groups
causing multiple 3D detections. This scenario could be detri-
mental when a precise object size has to be known to place
the picked-up object to another location. Also, when there
is a background clutter, a point cloud of the clutter objects
gets easily aggregated with the foreground object causing an
erroneous oversized 3D detection. However, a 2D scanning
window based framework can handle this more robustly as
shown in Table I. Finally, 3D point cloud based detection fails
when objects have not enough protrusion from the table e.g.,
scissors.

C. Detection, Categorization, Pose estimation and Grasp af-
fordance estimation results on cluttered scene

We now report experimental results on the the second test
data set with substantially more viewpoint and scale variations
and clutter as mentioned above. Section IV-C1 shows results
on object detection and categorization. Section IV-C2 reports
root mean squared error on pose estimation while jointly
inferring object locations and category labels. Finally, section
IV-C3 shows our joint visual grasp affordance estimation
results.

1) Detection and categorization: We applied the same
detection evaluation scheme in the previous experiment where
the highest scoring detection among all locations of a given
image among all the categories were considered a true positive
if the bounding box overlap criterion is more than 50% [6].

For comparison, we also experimented with a baseline method
where a closest matching (via `2 distance metric in SIFT
feature space) training instance among the database of 10360
annotated training images are found and the labels of the
nearest neighbor instance are then returned as predictions.

Mean detection accuracy was 72.22%. Figure 11 shows the
confusion table for the categorization performance on correct
detections (predicted bounding box overlaps more than 50%
with the ground truth box). Figure 11 (Top) shows that our
method confuses the eraser category as the remote control
category in some cases, but generally chooses right object
category labels compared to the nearest neighbor baseline
(shown in Figure 11, Bottom).

2) Multi-Category Pose Prediction: We evaluate current
approaches to 3d pose estimation and investigate how they
translate to our desired setting of angle accurate predictions
while performing generalization to previously unseen test
objects. As a baseline method we looked at a nearest neighbor
approach where we compute HOG (histogram of gradients)
[4] features of given test images and compare among all the
1295 images per categories(stored as HOG [4] templates) with
L2 distance metric. Additionally we evaluate [12] as it is to
our knowledge the state-of-the-art on the popular 3d (discrete)
pose database proposed in [25] both in discrete viewpoint
classification mode and in continuous viewpoint regression
mode.3.

Figure 12 shows the performance in root mean squared error
of the roll and pitch angle estimations we obtain using the
proposed dataset when the object location and category labels
are unknown and jointly inferred as well as the object pose.
As expected we observe a moderate drop when comparing the
angle accurate results from [12] to our setting where we eval-
uate both on cross-instance and cross-category generalization.
However, we can see that continuous viewpoint regression
method improves the pose estimation performance over other
methods on most object categories.

3) Visual Grasp Affordance Prediction: We now evaluate
the accuracy of our joint method for grasp affordance pre-
diction. Again, we use the proposed dataset where we have
annotated graph affordances.

We investigate two scenarios as in the pose estimation ex-
periment. The first assumes that a bounding box was provided

3Code was provided by the authors
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Fig. 12: Accuracy of pose prediction without object locations and category labels. The top and the bottom plots show RMSE
for yaw and pitch angles respectively. The last three bars show the class averaged results. Note that the yaw angle for the bowl
category is omitted due to yaw angle symmetry.

by a bottom up segmentation scheme - as it could be available
in a robotic setting by 3d sensing or a form of background
subtraction. The second scenario will run our full detection
pipeline and all further processing is based on this output.

As a first baseline we compare to the results from purely lo-
cal measures (tagged “Local(px)”). The approach “Global(px)”
only uses the global path by predicting grasp affordances
regressing from the predicted the poses conditioned on the
corresponding predicted category labels. Then, we present the
fused approach (tagged “Fused(px)”). Finally, we converted
the mean pixel deviation from the fused estimate into real
world metric distances by working out the perspective projec-
tion using the previously recorded depth measurements (tagged
“Fused(cm)”).

Table 2 shows the average distance in pixels between the
predicted grasp affordance and the ground truth annotation
when the bounding box is assumed to be known while Table
3 shows results employing the full processing pipeline. We
observe consistent improvements on the average results going
from the purely local cue, switching to the global pipeline
and finally fusing local and global in our combined approach.
Overall, we reduced the average distance obtained by local
model by about a factor of four. For comparison, [26] reports
1.80 cm metric distance error when the object locations were

Local (px) Global (px) Fused (px) Fused (cm)
Bowls 62.33 17.61 9.99 0.41
Mugs 61.97 12.83 8.38 0.35
Remotes 33.35 6.82 8.46 0.35
Markers 18.22 5.68 3.67 0.15
Erasers 56.03 12.84 19.02 0.79
Spray Bottles 153.70 44.19 19.34 0.80
Scissors 10.41 17.11 12.05 0.50
Pots 177.41 47.43 34.02 1.41
Average 71.68 20.56 14.37 0.59

TABLE II: Affordance prediction given groundtruth bounding
box

known. We report 0.59 cm and 0.77 cm metric distance error
when the object locations were known and not known.

Figure 13 presents example predictions of our framework
on randomly chosen test objects. The magenta patches repre-
sent the points among the fused probability maps where the
likelihoods are the highest (patches were blown up to help the
visualization) The red boxes and thick axes represent ground
truth bounding boxes and axes. Respectively, the green boxes
and the thin axes represent the predicted object locations and
pose.
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(a) Bowl (b) Mug

(c) Remote (d) Marker

(e) Eraser (f) Spray bottle

(g) Scissors (h) Pot

Fig. 13: Examples predictions of our framework
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Fig. 11: Categorization confusion matrices for correctly de-
tected objects. (Top) Our detection method. (Bottom) Nearest
neighbor baseline

Local (px) Global (px) Fused (px) Fused (cm)
Bowls 65.10 39.47 28.50 1.18
Mugs 20.58 38.13 19.84 0.82
Remotes 38.20 8.54 9.91 0.41
Markers 13.22 7.98 4.72 0.19
Erasers 46.15 13.31 17.81 0.74
Spray Bottles 114.23 35.04 33.26 1.37
Scissors 7.95 10.52 5.07 0.21
Pots 181.34 46.43 29.13 1.20
Average 60.85 24.93 18.53 0.77

TABLE III: Affordance prediction without bounding box and
category label

4) Robot grasping experiments: For the robot grasping
experiment, we placed previously unseen test objects on a clut-
tered table in front of PR2 robot. We designed the experiment
to test how well the robot can grasp test objects in a fully
autonomous setting where the robot has to first localize a test
object, classify which object category it belongs to, infer the
object pose, estimate the grasp affordance, and execute the
grasp in collision free path.

Whenever the robot picked up the correct object at the cor-
rect position which matches the supervised grasp annotation
shown in Figure 3, the experiment was counted as a success.
The results of the experiments are shown in Table IV.

The visual inference (detection, categorization, pose esti-

Grasp success (%)
Bowls 86
Mugs 50
Remote 86
Markers 50
Erasers 86
Spray Bottles 62
Scissors 45
Pots 80
Average 65

TABLE IV: Grasp success rate

mation) were mostly correct for mugs but small affordance
error in localizing the mug handle caused the robot to unstably
grasping the handle causing grasp failures. For small and flat
objects (markers, scissors) both mislocalization due to the
background clutter and affordance estimate error contributed
equally to grasp failures.

We made a video demonstration of the PR2 robot grasping
the mentioned test objects at:

http://www.youtube.com/watch?v=C3HU1Tb5hF4

V. CONCLUSION

Appearance-based estimation of grasp affordances is desir-
able when other (e.g., 2.5-D or 3-D) sensing means cannot
accurately scan an object. We developed a general framework
for estimating grasp affordances from 2-D sources, including
local texture-like measures as well as object-category measures
that capture previously learned grasp strategies.

Our work is the first to localize the target object and infer
grasp affordance by combining texture-based and object-level
monocular appearance cues. Further, we provided a novel
evaluation of max-margin pose regression on the task of
category-level continuous pose estimation and a method for
inferring grasp affordance from the pose estimate.

Our analysis is made possible by a novel dataset for visual
grasp affordance and angle accurate pose prediction for indoor
object classes. We will make our code and the dataset public
to the research community to further stimulate research in this
direction.
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