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Abstract— This paper presents a system which constantly
monitors the level of attention of a driver in traffic. The vehicle
is instrumented and can identify the state of traffic-lights, as
well as obstacles on the road. If the driver is inattentive and fails
to recognize a threat, the assistance system produces a warning.
Therefore, the system helps the driver to focus on crucial traffic
situations. Our system consists of three components: computer
vision detection of traffic-lights and other traffic participants,
an eye tracking device used also for head localization, and
finally, a human machine interface consisting of a head-up
display and an acoustic module used to provide warnings to the
driver. The orientation of the driver’s head is detected using
fiducial markers visible in video frames. We describe how the
system was integrated using an autonomous car as experimental
ADAS platform.

I. INTRODUCTION

A significant percentage of traffic accidents is a result of
driver drowsiness or driver unawareness [2]. Many new cars
are entering the road every year: in 2010 the number of ve-
hicles worldwide crossed the one billion mark [17]. Accord-
ing to the National Highway Traffic Safety Administration
(NHTSA), falling asleep while driving causes approximately
one hundred thousand car crashes in the United States, about
40,000 non-fatal, and more than 1500 fatal injuries [15]
yearly. This paper addresses these issues and describes a
driver assistance system which:

1) Recognizes traffic-lights and vehicles at intersections
using a self-developed stereo-camera and FPGA for
fast 3D preprocessing.

2) Estimates the gaze direction of the driver and the
position of his head relative to the car, checking if
the driver fails to notice critical traffic conditions (for
example a red traffic-light).

3) Warns the driver using a self-developed head-up dis-
play (HUD) and acoustic signals (e.g. speech) when
he or she fails to notice a red traffic-light or vehicles
arriving or waiting at intersections.

The system was developed using our autonomous vehicle as
a testbed (Fig. 1).

A. Information Data-Flow

The data-flow between the system modules is shown in
Fig. 2. The stereo camera detects the traffic-lights and vehi-
cles on the road relative to the car. For improved performance
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Fig. 1. Our testbed, the autonomous car “MadeInGermany”.

we have been using road maps with annotated intersections
in order to avoid false positive detections of traffic-lights.
The gaze direction estimation module is based on wearable
glasses which detect the gaze direction of the user using
small video cameras pointed to the iris. The main module
uses the information from the vision and gaze modules to
determine if the driver has seen or not other vehicles and
traffic-lights. If necessary, a warning message or symbol is
shown in the HUD, and an acoustic warning is played.
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Fig. 2. Module Diagram which shows the data flow between traffic-light
and vehicle detector, gaze direction estimator, HUD and acoustic output,
and core module.

B. Related Work

Strong and reliable sensor fusion methods are crucial for
driver assistance systems as well as for self driving cars. An
important subtask is to detect other vehicles, traffic lights
and road signs. An early version of a shape based road-
sign detection was presented in [13] or, using two-layered
neural networks in [4]. Monocular vision for autonomous
driving has been successfully applied by Dickmanns et al.



in [3]. Another interesting approach combining lidar and 2D-
camera data using HOG-based object recognition has been
presented in [11]. A method for recognizing traffic-lights
was described in [18]. A traffic-light detection method able
to recognize left and right turn traffic-lights was presented
by Google in [19]. A boosting framework for image-based
classifiers was developed by Viola and Jones in [21], an
approach which we have been using for vehicle detection.
Much research effort has been spent in the detection of
driver drowsiness and fatigue, e.g., in [10]. There have been
many applications of head-up displays [1] for avionics. Such
HUD systems are now conquering the market for assisted
driving solutions. Much research has been performed on gaze
direction detection with different sensors and for a variety of
applications. Land and Lee did research on where a driver
looks while entering a curve [12], finding a driver looks on
the tangent of the road ahead. A system, which checked
if a driver had missed or perceived speed limit signs was
presented in [5]. In [20] a vision based eyes of the road
detection system was introduced. The work from Ziraknejad
et al. [24] tries to detect head positions using capacitive
sensors for a better adaptation of head restraint systems.
The work from Skodras et al. [16] uses a low-cost webcam
to detect eye-movements. In [14] a solution which applies
heat-maps and optical flow methods for a highly precise
attention estimation was presented. The vigilance of a driver
has been widely been within the focus of research, as in [9]
showing how driver drowsiness could be measured. In [2] an
IR-camera was used to measure eye closing duration, as well
as eye blinking and nodding frequencies, or in [23] using
time-of-flight cameras.

The paper is structured as follows: Section II presents the
stereo camera system used for the detection of traffic-lights
and other vehicles. The algorithm for the detection of traffic-
lights is described in Section III. The method of vehicle
detection is explained in Section IV. Section V presents
the eye-tracking hardware used. We explain our head lo-
calization approach using fiducial markers and/or infrared
LEDs installed in the cockpit. Section VI describes our self-
developed head-up display. We present experimental results
for the different modules, specially concerning recognition
rates in Section VII, before providing a summary of the
paper.

II. OUR STEREO-CAMERA

Our robotic testbed has been equipped with a smart stereo
camera used to perceive the 3D structure of the environment
and to detect traffic-lights (Figure 3). Our camera, developed
for our previous AutoNOMOS project, processes the images
on-board using an FPGA which delivers 3D point clouds to
an on-board application processor. Disparities are processed
at a resolution of 752× 480 pixels at 30 frames per second.
An example of the disparity map produced by our camera
is shown in Figure 3. The camera is well suited to mobile
robotics due to its low power consumption of 1.5W. Its small
size and its HDR global shutter sensors are advantageous

for our application. The camera has been utilized in several
vehicles ranging in size from model cars to full-size trucks.

Fig. 3. Smart stereo camera and disparity image. Top: Smart stereo camera.
Bottom: Example image processed by the camera’s FPGA (image #8 of
KITTI benchmark [7])

III. TRAFFIC-LIGHT DETECTION

Fig. 4. Two tracked traffic-lights and a detected vehicle.

A. Pixel Classification

We decided to use the HSV color space for pixel clas-
sification because it can separate luminance and chroma.
An automatic analysis of images in a training set generated
the thresholds for each color class. Fig. 5 shows the hue
distribution of a few traffic-light samples. Obviously, the red
and yellow distributions overlap, but have different modes.
A probabilistic approach is feasible, assigning each hue
a probability of being red or yellow. For our purposes
(awareness detection) we decided to create one common
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Fig. 5. Distribution of hue angles for red, yellow and green traffic-lights.

Hue [deg] Saturation [%] Value [%]
Red-Yellow 0-70 0.4-1.0 0.6-1.0
Green 140-180 0.4-1.0 0.6-1.0
Dark - 0.0-0.3 0.0-0.3

TABLE I
PIXEL COLOR CATEGORIES ACCORDING TO RANGES OF HUE,

SATURATION, AND VALUE.

color class for red and yellow and deal with the exact color at
a later processing stage (see below). Such hard color labeling
simplifies the subsequent connected component analysis.
Together with color, we also consider the 3D position of each
pixel. In fact, most color-matching pixels can be rejected
very early because of their implausible height or lateral
distance to the street. In particular, we exploit the fact that
in Germany the exact positions of traffic-lights are defined
by the RiLSA standard (Richtlinien für Lichtsignalanlagen).
Under this directive, the base of a hanging traffic-light frame
lays at 4.5m. Signals mounted to a pole are positioned
at 2.1m above the ground. We assign a class label (Red-
Yellow, Green, Dark or Background) to each pixel and
pass the classified image through a connected components
calculation.

B. Colored Connected Components

Only the color classes Red-Yellow and Green are consid-
ered for the connected component analysis. The label Dark
is useful for the unlit parts of a traffic-light, but those pixels
may not be distinguishable from the background. Especially
at night, the segmentation of the traffic-light frame can fail.
Therefore, the Dark pixels are used instead to verify if
regions adjacent to light sources appear indeed dark. The
connected components are built applying region growing to
the color labels, whereby two pixels of the same color class
in an 8-neighborhood are considered connected. Additional
heuristics are applied to discard components of irregular
shape, low density, or inconsistent depth.

C. Construction of Traffic-Light Entities

The detected circular regions of colored lights are used to
construct complete traffic-light entities consisting of three (lit
or unlit) circular light sources on a rectangular dark-colored
frame. The length ratios between the lights and the frame
are known. Thus, we use the measured size, color and 3D
distance of the detected light source to determine the area
where the two other unlit light sources should be found. We
count the number of pixels classified as Dark within those
regions, and compute their density. If the density is larger
than a threshold (i.e. 75%), and the average 3D distance
is comparable to that of the light source, the region will be
accepted. At this point the ambiguity between red and yellow
traffic signals can be resolved, because they have a different
position.

D. Tracking and State Output

The positions of all detected traffic-lights are tracked
over time. We use a recursive filter which performs alter-
nate prediction and measurement updates. The prediction
step displaces a tracked traffic-light under the assumption
of constant pixel velocity to a new image position. Then
new measurements and predicted traffic-lights are matched
with respect to their distances in the image. Two typical
trajectories can be seen in Fig. 4. The final traffic-light
state is determined by a majority vote between all tracked
lights. In case of a split vote, the closest semaphore wins.
Finally, the state forwarded to the system is smoothed by
a hysteresis filter requiring three consecutive identical states
for triggering a state change. The possible states are Stop,
Go, and Unknown (i.e. no traffic-light detected).

IV. VEHICLE DETECTION

Fig. 6. The occupancy grid computed for the scene shown in Fig. 4. Green
cells mark free space and red cells mark occupied space. The gray shaded
cells are (partially) occluded by the obstacle.

A. Occupancy Grid Computation

Our stereo camera provides 3D point clouds, that we use
for obstacle detection. The segmentation of objects from
point clouds can be a challenging task. Thus, we decided
to simplify the problem by computing a 2D histogram of the
point cloud. Each cell covers a small area in front of the car
and accumulates the 3D points being in a volume above that
cell. In our case, only points within a height range of 0.5m
to 1.5m are considered. Depending on the number of points
every cell is labeled either occupied or free, hence the name
occupancy grid.



B. State Decision for Grid Cells

Due to perspective projection close grid cells usually
contain more points than far away cells. Thus, we cannot
mark a cell as occupied by inspecting the absolute numbers,
but instead have to calculate the degree of occupancy. For
this purpose, we compute a priori the projection of each cell
volume onto the image. This yields the upper bound for the
number of points a cell can hold, allowing us to compute the
degree of occupancy. Any cell with a ratio larger then 10%
is marked as Occupied, while the rest is labeled as Free.

C. Obstacle Segmentation

Subsequently, we apply region growing to merge adjacent
occupied cells into objects. Fig. 6 shows the occupancy grid
for the scene depicted in Fig. 4. The measured distance to
the car is the one to the closest cell. Tracking the distance
over time yields information about the relative speed and the
time to collision.

V. ESTIMATION OF GAZE DIRECTION

We use commercially available eye tracking glasses built
by SMI in order to detect the driver’s focus of attention
(Fig. 7). Each eye is captured by an infrared camera and
the direction of the user’s gaze relative to the glass mount is
calculated by the vendor’s software. To determine the driver’s
focus of attention, we need to know the position of the
driver’s head in order to transform the local gaze direction
to the car’s coordinate system.

Fig. 7. The eye tracking glasses produced by SMI. A mini camera is pointed
away from the frame (as in a Google Glass frame). Two mini cameras are
inside the frame and are pointed towards the eyes of the user.

One approach for tracking the position of the head is to use
an external fixed camera for observing the driver, who needs
to wear special markers. Both the observation of the driver by
a camera and the need to wear the markers are impacting the
acceptance of the system. We selected a different approach
instead, where we are relying on the glasses’ embedded scene
camera. This mini camera is located above the nose and is
pointing forward and slightly down. Image processing is used
to determine the head orientation based on observed features
inside the cockpit.

A. Infrared LED Marker Detection

Our first method for tracking the head orientation was
to use infrared LEDs. Some 880 nm LEDs are placed at
predefined positions along the windshield border. A bandpass

filter (85% transmission, 10 nm FWHM) blacks out most
irrelevant parts of the image. The LEDs were sufficiently
bright to be visible in the image even at the lowest exposure
setting, and a simple threshold was applied to further reduce
noise. The remaining white blobs in the resulting black-
white image were then extracted. A heuristic allowed us
to filter out sunlight and most reflections in the remaining
infrared band around 880 nm. Fig. 8 depicts our prototype
board, the scene view with and without the bandpass filter,
as well as the final detection result. Based on the position
of the LEDs comprising the predefined pattern, we used
OpenCV’s solvePNP1 function to determine the camera’s
position. Initial experiments using a web cam with a fixed,
low exposure produced promising results. Unfortunately the
embedded scene camera in the glasses only supported auto-
exposure at the time of the experiments. Due to the bandpass
filter, the camera images were usually quite dark, resulting
in a high exposure and corresponding motion blur which
prevented us to achieve a precise detection of the LEDs.
An update to the glasses’ software was not available at time
which is why we switched to another approach to infer the
head orientation of the driver.

B. Fiducial Marker Detection

To overcome the described challenges, we pursued an
alternate approach using fiducial markers (Fig. 9). Numerous
software solutions exist to create appropriate markers and
locate them within images. Although they are commonly
used for augmented reality applications, they can be also
used to determine the position of a camera given the known
location of the markers.

We selected the ArUco2 library based on [6] for this task.
Three markers were placed in the car: One slightly left of the
driver, one in the center of the car’s dashboard, and one on
the right. The field of view of the camera and the position of
the markers ensures that at least one marker is visible most
of the time. This is sufficient to determine the position and
rotation of the scene camera within the vehicle’s coordinate
frame.

C. Calibration

Several calibration steps are required to achieve sufficient
precision for gaze direction estimation.

The eye tracking glasses require a manual calibration
to adjust for differences in the driver’s eyes anatomy. For
this, the vendor’s software provides one- and three-point
calibration which we integrated in our software. The driver
focuses attention towards a specific point which then is
selected in the calibration software. Differences between the
focus model and the actual focus will be used to calibrate
the model to the driver’s eyes.

The glasses come pre-calibrated to transform the infrared
eye tracking camera coordinate system to the scene camera.

1http://www.opencv.org
2http://www.uco.es/investiga/grupos/ava/node/26



(a)

(b)

(c) (d)
Fig. 8. Detection of the infrared marker, consisting of four 880nm infrared
LEDs. (a) Close-up of the prototype marker board with the infrared LEDs
highlighted. (b) The marker board in an experimental setup with a sunlit
background. (c) The board recorded with the infrared bandpass filter. The
LEDs are significantly brighter than the sun-lit background. (d) The output
of the detection filter.

For our marker detection, we use OpenCV’s camera cali-
bration function to determine the intrinsic parameters of the
scene camera.

Finally, it is necessary to determine the position of the
markers in the car coordinate system. For this, we calibrate
the location of the central marker in the car by means of
an external calibration pattern which position is known by
other means. This marker is fixed, allowing to calibrate its
position and rotation once. For our test setup, the other
two markers are positioned in a way that allows the scene
camera to capture them together with the central marker.
This provides the opportunity to calibrate the other markers’
position during runtime. For increased accuracy, all markers
will be calibrated individually.

VI. HEAD-UP DISPLAY

The goal of our system is to increase the driver’s awareness
of hazardous situations using technical aids. Therefore, it is
of high importance for the user interface to be as unobstru-
sive as possible.

Experiments have shown that glances at car displays can
take up to two seconds [22]. At city driving speeds, a car

Fig. 9. Left: Fiducial marker example. Right: two markers inside the
cockpit.

travels up to 30 meters during this period without driver
attention to the road. Even when the driver looks back to the
road the response time to a possible hazardous situation has
to be added to the glance duration. The loss of road attention
caused by car displays is caused by:

• Location: In-car displays are mounted on the dashboard.
Glancing usually requires to turn the head.

• Distance: In-car displays are close to the driver. There-
fore, the focus of the driver’s eyes has to adapt to the
distance.

• Brightness: Illumination is usually brighter outside than
inside the car. A glance to the car display requires the
iris to adapt.

The eyes have to adapt twice: When viewing changes from
the road to the display, and vice versa.

Head-up displays are a well-known approach for reducing
the attention problems of car displays. Usually, HUDs are
implemented with a light projector. Its image is reflected
by the windshield so that the information appears in the
normal field of view of the driver. Since in this case the
location, distance, and brightness do not change for the eyes,
the glance duration is lower compared to a car display in the
instruments panel [8].

Most devices available today are active systems, based on
LED technology. Active systems have to be adapted to the
environment, for example, during the night the image needs
to be dimmed. To overcome the brightness problem and to
provide a natural viewing experience, we propose a passive
system that uses reflective technology. Figure 10 shows our
head-up display. It was built using a 10 inch e-paper display
and a custom e-paper controller.

The device is mounted on the dashboard of the car as
seen in Figure 11. Images shown on the e-paper display are
reflected by the windshield. This projects the image onto the
road in front of the car which is in the natural field of view
of the driver. To avoid a direct line of sight to the display
a small barrier with a fiducial marker has been added to the
device.

To overcome the slow update rate of e-paper, we developed
a custom e-paper controller based on an STM32F4 ARM
microcontroller. This allowed us to preload urgent messages
like a hazard warning into the e-paper’s memory without
displaying them. Upon detection of a hazardous situation the



Fig. 10. Head-up display device. Left: Screen using e-paper technology.
Right: Custom e-paper controller

Fig. 11. Head-up display seen from the driver’s point of view. The display
uses LED illumination during nighttime

e-paper can be enabled and displays the preloaded content
with low latency.

VII. EXPERIMENTS

A. Traffic-Light Detection Results

We obtained detection rates of above 95% in our experi-
ments, which we want to improve, but is already significant
and useful for a warning system. For our application it is
also important to detect traffic signals as early as possible.
As can be seen in Fig. 12 the typical detection range is at
40m. Given the inner-city speed limit of 50 km/h, this gives
the driver a reaction time of 2.8 s in case of a warning.

B. Gaze Direction Estimation

Lacking reasonable ground truth, we conducted a simple
experiment to evaluate the accuracy of the gaze direction
estimation. During a test drive in city traffic we asked the
driver to focus certain points in the scene and compared
it to the direction computed by our system. We observed
deviations of up to 3 degrees, which is still sufficient for
our purposes. To compensate for the errors, we enlarged the
computed line of sight to a cone of 10 degrees aperture. Any
object within this cone is assumed to have drawn the driver’s
attention.

Fig. 12. Detection ranges for a sequence of 23 traffic-lights (represented
by 23 bars). The distance to the traffic-light in meters is shown on the
horizontal axis. The traffic-light is situated at the right end. The ranges
start at 10 meters because any closer traffic light is beyond the camera’s
field of view. The color of the bar represents the state of the traffic-light.
Some of the lights suddenly disappear because the car has turned left before
reaching them. Traffic-light #3 (from the bottom) left the camera’s field of
view before it turned green.

In another simple test, we measured the standard deviation
of the detected marker rotation for a non-moving camera
outside the car. The rotation angles (roll, pitch, yaw) can
differ by up to 0.2 degree. Hence, we assume the overall
inaccuracy is caused by other factors.

C. Overall Results

Fig. 13 shows a driver using our system. The direction of
his gaze is detected by the eye-tracker, the fiducial markers
allow us to map the eye-direction to the frame of the
car. Fig. 14 shows the 3D point cloud produced by our
stereoscopic camera and the cone of attention of the driver,
determined by his gaze. It is then possible to detect if the
driver has not yet seen a red light or a car coming from
the right. In that case a warning is given. The vehicle does
not react to these events, all responsibility remains with the
driver. We are now in the process of testing the system in the
streets of Berlin. A group of selected drivers will be asked
to drive in the city and the quality of the warnings will be
assessed by a driving instructor.

VIII. CONCLUSIONS

We have described a system which allows the detection
of a driver’s awareness or unawareness of critical traffic
situations. In case of distraction, the system helps the driver
to guide his attention to the traffic-lights or to oncoming vehi-
cles. More research needs to be done to improve the accuracy,
reliability and practicality of the proposed approach. Variable
lightning is a challenge for camera based ADAS – further
research needs to be done in order to guarantee optimal
performance during day or night. Regarding the vision sensor
used, it is usually necessary to collect depth-data for objects
50 or 100 meters away. This requires higher resolution and/or



Fig. 13. Whole systems experiment. The driver is wearing the eye-tracker
glasses, a camera in the glasses is perceiving the fiducial markers and
localizes the head relative to the car.

Fig. 14. The depth and image information of the stereo camera is projected
as a colored point cloud into the 3D-space with respect to the car. The gaze
direction is depicted as the semi-transparent cone, starting from the driver’s
seat.

greater disparity between the stereo cameras. For practical
purposes, an eye-tracking device which does not require
wearing special glasses would provide optimal comfort and
the best use-case.

ACKNOWLEDGEMENTS

The authors would like to thank the German Ministry of
Education and Research (BMBF) for funding this project. We
would also like to thank Sensomotoric Instruments (SMI) in
Teltow, Germany, for their support in this project.

REFERENCES

[1] K. Asai. The Role of Head-Up Display in Computer- Assisted
Instruction, Human Computer Interaction: New Developments. 2008.

[2] L. Bergasa, J. Nuevo, M. Sotalo, and M. Vazquez. Real-time system
for monitoring driver vigilance. In Proceedings of the IEEE Intelligent
Vehicle Symposium, pages 78–83, 2004.

[3] E. Dickmanns and V. Graefe. Applications of dynamic monocular
machine vision. Machine Vision, 241–261, 1988.

[4] C. Fang, C. Fuh, S. Chen, and P. Yen. A road sign recognition
system based on dynamic visual model. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog- nition, volume 1,
2003.

[5] L. Fletcher, G. Loy, N. Barnes, and A. Zelinsky. Correlating driver
gaze with the road scene for driver assistance systems. Robotics and
Autonomous Systems, 52:71–84, 2005.
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