Traffic Awareness Driver Assistance based on Stereovision, Eye-tracking, and Head-Up Display

Tobias Langner, Daniel Seifert, Bennet Fischer, Daniel Göhring, Tinosch Ganjineh, and Raul Rojas
Freie Universität Berlin, Autonomos GmbH, Germany
Outline

• we present a system which monitors traffic and the driver’s attention to support driver awareness

• if the driver misses gazing at other vehicles or red traffic light, the system gives different warnings

• stereo camera, eye-tracker, head localization, HMI, acoustic warning
System Description

![System Diagram]

- **Vision**
 - Traffic light detection
 - Vehicle detection

- **Core**
 - Objects in gaze dir
 - Right of way analyzer
 - GPS localization
 - Car centered gaze dir

- **Gaze dir. estimator**
 - Head localization
 - Eyetracker

- **HUD and Acoustic**
 - Traffic light warning
 - Right of way warning

Daniel Göhring
18 May 2016

Dahlem Center for Machine Learning and Robotics (DCMLR)
Test Platform

- **Vehicle**: VW Passat Variant, modified by VW
- **Integration of sensor systems**, Drive- and Steer-by-Wire, CAN
- **Positioning system**: Applanix POS LV 510
 - IMU, odometer, correction data via UMTS
- **Camera systems**:
 - 2 INKA Cameras (HellaAglia)
 - Continental Lane Detection
- **Laser scanner**:
 - IBEO Lux 6-Fusion System
 - 3D Laser scanner: Velodyne HDL 64 E
- **Radar systems**:
 - 2 short range (BSD 24 GHz)
 - 4 long range (ACC 77 GHz)
 - 1 SMS (24 GHz)
Stereo Camera

• developed at Freie Universität Berlin

• uses FPGA and synchronized images to generate disparity map
Gaze Localization

Daniel Göhring
18 May 2016

Dahlem Center for Machine Learning and Robotics (DCMLR)
Head-Up Display
System at Work
Gaze Direction
Experimental Results

Histogram of traffic light hue values

Traffic light detection
For further discussion, please come to poster 3.9 at interactive session 2:50 p.m. (Weln-CaP3)