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Abstract— In this paper we present a vehicle detection system
using convolutional neural networks on 2d image data. Since
realtime capabilities are crucial for object detection systems
running in real-traffic situations, we will show how the calcula-
tion time of our algorithm can be significantly reduced by taking
advantage of depth information from lidar sensors. One part
of this work focusses on useful network topologies and network
parameters to increase the classification precision. We will test
the presented algorithm on an autonomous car in different
real-traffic scenarios with regards to detection accuracy and
calculation time and show experimental results.

I. INTRODUCTION

The last decade saw a tremendous increase in driver as-
sistance systems for road vehicles as cars, busses and trucks.
The final development could result in a fully autonomous
vehicle. To develop such a vehicle, it is important to construct
systems which allow the vehicle to perceive and to analyze
its environment. Therefore, different types of sensors can
be useful. One of the most important class of sensors are
camera systems which allow the detection and classification
of objects in the environment.

Fig. 1: Our test vehicles MadeInGermany and e-Instein

In recent years, many image based classification methods
have been developed and applied, some of them will be
discussed later. In this work we applied convolutional neural
network (CNN) classifiers on 2d images in combination
with lidar and radar based data. The goal of this work is
a quick classification of other vehicles in realworld traffic
scenarios. For this work, we used the Caffe framework [10]
as a software architecture to train and to run the CNN
classifiers. Furthermore, this work discusses the structure
and choice of parameters for the CNN. To examine useful
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Fig. 2: Sensor configuration, camera, lidar-, and radar sensors on
MadeInGermany. For our approach, the Lux laser scanners and TRW front
radar (behind the VW sign) were used.

sets of parameters for CNN classifiers on the given task,
different CNNs were tested with different parameters. In
addition, we created our own training data set. Finally, we
tested the presented approach on our autonomous vehicle
“MadeInGermany”, see Fig. 1. We will take advantage of
different sensors, as depicted in Fig. 2, especially camera
images, lidar, and radar data. The configuration of lidar and
radar sensors is presented in Fig. 3.

As a result, our system is able to process images with more
than 5 frames per second. 80 percent of the objects within
preselected image patches were classified correctly as vehicle
or non-vehicle. The paper is structured as follows: Section II
gives a brief overview about related work, Section III in-
troduces basic concepts of CNNs. Experimental results are
presented in Section IV, Section V gives a summary and
outlook for future research.

II. RELATED WORK

In the area of visual object detection and classification in
2d images, there have been a myriad of different approaches
in recent years. One of the most popular approaches is the
one of Viola and Jones [13] from year 2001. The main
goal of their work was the real-time recognition of faces
in grayscale images. In their algorithm, Haar features were
applied in different scales on an integral image. An AdaBoost
based algorithm [17] identifies the best classifying features



Fig. 3: Lidar sensor configuration and fields of view in pink(six sensors
Ibeo sensors); the front facing 77 GHz radar in gray.

and sorts out images which do not show any faces. The
approach is not very fast for training but allows real-time
recognition. Another popular approach to recognize and
classifiy objects on visual data are deformable parts models.
The main idea is to detect objects consisting of multiple parts
and to consider their relative position towards each other. The
deformable parts model of Felzenszwalb et al. [12] applies
HOG features which are used to train a Support Vector
Machine classifier. For classification, a model consisting of
three components is used. The first component is a root
filter which defines the main appearance of the object core.
The second part describes different parts of the object. The
third part describes spatial relations of all the different parts
towards the root filter.

One of the most recent and very promising field of re-
search is Deep Learning using convolutional neural networks
(CNNs). The approach has shown its superiority towards
other methods in various classification competitions, e.g.,
in the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC), where Deep Learning based approaches scored
best over the last years. The main work principles of CNNs
try to mimic work principles of the human brain and its
visual cortex. To do so, CNNs have multiple layers to
recognize objects. One of their strengths is the ability to
classify objects within thousands of classes. Krizhevsky et
al. [2] created a CNN at the LSVRC-2010 which was capable
to work with 1000 classes. Other advantages of CNNs are
their relative robustness towards image noise, robustness
towards rotation and change of position of objects within
an image. A big disadvantage, though, is the long training
time and the need for a large training data set.

Krizhevsky et al. [2] showed how training time of a
CNN can be significantly reduced. Therefore, the up to then
commonly used sigmoid or tanh functions were replaced
by ReLU-Layers, which allowed an acceleration for the
Backpropagation algorithm [4]. Furthermore, using Graphics
cards for training and exploiting highly parallelized com-
puting helped further reducing training and classification

times. Lawrence et al. [14] developed a hybrid network from
image sampling, self-organizing map (SOM) and a CNN to
classifiy images from faces. They showed the superiority of
a CNN towards a multi-layered perceptron (MLP). Lee et
al. [8] developed a convolutional deep belief network with
probabilistic max-pooling to classify an unlabeled data set.
They showed how the network is able to generate visual high-
level features efficiently. Recently CNNs have continued
their success in applications to traffic perception scenarios,
where pedestrians or vehicles need to be detected. Nguyen et
al. [7] presented a CNN to recognize pedestrians and showed
how their networks can be trained within a fraction of time
compared to common training methods. In [6] an application
of CNNs to detect vehicle colors was presented.

III. APPLICATION OF CNNS FOR REALTIME-VEHICLE
RECOGNITION

A. Convolutional Neural Networks (CNNs)

Artificial neural networks (NN) consist of several layers of
fully connected neurons. Each neuron gets an input vector
~x = x1, . . . , xn. The output o of each neuron is created
by calculating the scalar product from a weight vector ~ω =
ω1, . . . , ωn with the input vector ~x and applying an activation
function f . Usually, f is a logistic function, e.g., a sigmoid
function.

net =

n+1∑
i=1

(xi · ωi) (1)

o = f(net) (2)

For training of the network’s weights, the backpropagation
algorithm is used [4]. An error function E is defined over the
squared differences between expected class index si (labeled
in the training data) and calculated network outputs oi.

E =

N∑
i=1

(oi − si)2 (3)

The partial derivatives of this error function w.r.t. the
weights define the gradient ∇E = ( ∂E

∂ω1
, . . . , ∂E

∂ωn
) , as

described in [4]. The weight update ∆ωij is generated by
multiplying ∂E

∂ωij
with a learning rate µ.

∆ωij = −µ ∂E

∂ωij
= −µ · δj · xi (4)

δj =

{
ejf
′(netj) , if j is on last layer

(
∑K

k=1 δkωjk)f ′(netj) , otherwise
(5)

Here, ej is the first derivative of the error function E at
output neuron j on the last layer and δk is the backpropagated
error from the kth neuron of the succeeding layer.

Convolutional neural networks (CNNs) are a special form
of neural networks. A CNN consists of three different classes
of layers [3]:
• convolution layers



• pooling or subsampling layers
• a set of fully-connected layers
The convolution layer was introduced by LeCun et al.

[18]. In case of an input image Y , the image pixels with
coordinates (i, j) are convoluted with a filter W with weights
ωuv resulting in an output image S with pixels sij .

sij =

M−1∑
u=0;v=0

yi+u,j+vωuv (6)

An activation function f(x) with bias b is applied to each
sij of S.

oij = f(sij + b) (7)

A convolution layer consists of not just one but several
of these filters. A convolution layer is usually followed by
a subsampling (or pooling) layer. In the presented approach
max pooling was used [5], [9]. Here, the maximum value of
a set of input values is propagated towards the next layer.

oj = max
N×N

(xn×nf(n, n)) (8)

During backpropagation on a max pooling layer, the δ is
only propagated to the neuron which created the maximum
value during the feed-forward step [5].

Multiple alternating convolution and pooling layers are
followed by a conventional fully-connected neural network
(NN).

B. Further Improvements

For the calculation of the CNN the Caffe framework of
the Berkeley Vision and Learning Center (BVLC) [10] was
used. It supports performance speed up by GPU using CUDA
[1].

Furthermore, stochastic gradient descent (SGD) as de-
scibed in [4] was used for the calculation of the weight
updates in each iteration. The update in the current iteration
∆ωi is calculated as convex combination of the gradient
L(ω) and the previous weight update ∆ωi−1.

∆ωi = µ∆ωi−1 − αL(ωi−1) (9)
ωi = ωi−1 + ∆ωi (10)

The optimal learning rates α und µ must be experimentally
determined [11]. Furthermore the parameter α is decreased
during each iteration, which results in smaller weight updates
with an increasing number of iterations.

The ReLU function f(x) = max(0, x) has the desired
property that it can be calculated very efficiently. It’s deriva-
tive is either 0 , for x < 0 or 1. It is usually used instead of
the sigmoid function, especially while training CNNs.

f(x) = max(0, x) (11)

The ReLU layer is followed by a local response normal-
ization, as introduced by Krizhevsky et al. [2].

C. Data Set

For the training of the CNN a data set of images ex-
tracted from the front camera of the autonomous vehicle
“MadeInGermany” was used. The 64×64 images were ex-
tracted manually from the logged data from various trips
through Berlin.

A training set (approximately 1400 vehicle and 1700
background images), a training-validation set (750 images
of both classes) and a validation set (800 images of both
classes) were created. During the training process, the data
of the training set is sent through the network for a specified
number of iterations and the corresponding weight updates
are validated with the training-validation set to prevent
overfitting. After finishing the training process, the resulting
network is validated using the validation set.

D. Detection Module

For vehicle detection the Caffe CNN was integrated into
the existing framework for autonomous driving as an inte-
grated module. Input for the detection module is a 16 Bit
grayscale image from the on-board camera (which is then
converted to 8 bit grayscale) and bounding boxes of the
obstacles surrounding the vehicle generated from lidar and
radar fusion [15]. The three-dimensional bounding boxes are
projected into the two-dimesional camara space. Bounding
boxes which are not in the field of view of the camera
are ignored. The different processing steps to extract image
patches using lidar and radar sensory data are shown in Fig. 4
To guarantee the performance of the detector module, only
the ten closest objects are selected for classification. These
are the most important objects for the behavior of the car.
In the next stage of the detection module, for each object a
bounding rectangle is fitted around each projected bounding
box. The rectangle is scaled up by 10 percent to ensure the
whole car is inside and then enlarged to be square-shaped.
The resulting square area is rescaled to 56× 56 and passed
to the CNN. The result is visualized as colored overlay in
the image (green for car, red for background) and provided
to other modules in the framework.

Fig. 4: Work steps of the detection module: Projection of three-dimensional
bounding boxes in the two-dimensional camera space (step 1), calculating
rectangular bounding boxes in camera space (step 2), enlarging two-
dimensional bounding boxes to be square-shaped (step 3).

IV. EXPERIMENTAL RESULTS

For the vehicle detection module, the lidar point cloud was
clustered, representing different object within our vehicle’s
surrounding. Each point cluster is a vehicle object candidate.
Its location was projected back into the image plane, the



corresponding rectangle within the image was classified by
a CNN. This approach has the advantage that not all areas
within the image have to be classified but only those where
an object was detected - resulting in a faster execution time
and higher frame rate of the whole approach.

Besides applying the CNNs, we also tried to figure out,
how to set the parameters of the network to achieve the best
classification performance.

A. Network topology

To optimize the network topology we created different
networks with different topologies and compared them to
each other. Here we compared the average precision while
classifying 800 test images as a qualitative measure for the
recognition and runtime. To accomodate for the high number
of randomly chosen parameters, every network topology was
trained three times. Therefrom the average of the maximum
precision during training over time was created and used for
comparison. Here, average precision means that we calculate
the precision recall curve by incrementing a threshold param-
eter. The average precision is the integral (in our discrete
case the sum) under the precision recall curve. Topologies
of networks are shown in Table I.

B. Deep networks

To conduct research on the depth of a network, we created
Net03 and Net04. Net04 contains three convolutional layers,
whereas Net03 contains an additional convolutional layer.
The filter size and their number were adjusted in such a
way that the fully connected layer has to process the same
amount of data, c.f. Table I. This means that the output of
each layer (width × heigth × number of neurons) before
the fully connected layer stays approximately the same. The
results in Fig. 5 show, that the maxima of Net03 are higher
than those of Net04. Also, the averages in Fig. 5 show, that
Net03 achieves a higher precision score with its additional
convolution layer.

Taking a look at the execution times in Fig. 5, we see
that Net04 with its fewer layers needs four times as much
calculation time as Net03. This observation suggests that
deeper networks can be calculated more efficiently than
broad networks with larger filter sizes. In a next step, to
continue with our analysis on network depth, we extended
Net03 and Net04 by an additional fully-connected layer -
resulting in Net05 and Net06. The fully-connected layer was
placed within the already existing fully-connected layers.
The added fully-connected layer is followed by an additional
ReLU-layer, as shown in Table I.

Results of the comparison between network Net05 and
Net06, as shown in Fig. 5 do not indicate a significant clas-
sification accuracy improvement compared to the networks
without a fully-connected layer Net03 and Net04, as the
variance between the three test runs is comparably large.
It is still reasonable to assume that a further extension of
a network is useful, since for both networks (Net05 and
Net06), there are higher levels of peak precision, c.f., Fig. 5
than for Net03 and Net04, respectively.

Comparison Net05 with Net06 shows, that a further con-
volution layer leads to better results than a broader network,
since Net05 has a better peak performance than Net06. Fig.
5 shows also that the runtime is barely affected by the
fully-connected layer, whereas the further convolution layer
in combination with a narrower network does decrease the
runtime significantly.

0.6

0.7

0.8

0.9

Pr
ec

is
io

n

(a) Precision

Net03
Net04
Net05
Net06
Net08
Net09
Net10
Net11
Net12

0

20

40

60

80

100

tim
e

in
s

(b) time for 800 images

Net03
Net04
Net05
Net06
Net08
Net09
Net10
Net11
Net12

Fig. 5: Measurements on classification precision and running time; (a) shows
the averages of the maxima of the average precision. (b) shows the averages
of the running time for classification of 800 images.

C. Additional Dropout-Layer

Furthermore, Net06 was extended by a dropout-layer, to
prevent overfitting as described in the work of Srivastava et
al. [16], resulting in Net08. This layer was placed in between
the fully-connected layers, and switches off half of all con-
nections, c.f., I. Network Net08, as presented in Fig. 5, shows
no significant average increase on classification performance
compared to Net06, but reaches higher performance peaks.
Regarding the calculation time, c.f., Fig. 5, dropout- and
fully-connected layer do not seem to affect the running time
during execution.



Fig. 6: Examples with a good classification precision. All vehicles within
close and medium proximity could be correctly classified. Far away or
occluded vehicles were not classified as a vehicle.

Fig. 7: Examples for multiple wrongly classified objects. Changing lighting
conditions can affect the classifier

D. Gropping

In addition, the amount of training data was artificially in-
creased by gropping, its effect on classification performance
was analyzed. This means, we cut out a few patches of size
56×56 for each original 64×64 image patch and used those
patches for training. Because of the smaller dimension of
input images, the network needed to be adapted by reducing
the convolution- and pooling parameters. Therefore, two
networks were created, expecting a 64 × 64 image as an
input while not performing gropping (Net09, Net10) and
in addition, two more networks were tested (Net11 and

Net 03 04 05 06 08 09/11 10/12
Gropp no no no no no no/yes no/yes
C+R 25/6 50/6 25*6 50/6 50/6 25/5 50/5
P+L 3/2 3/2 3/2 3/2 3/2 2/2 3/2
C+R 51/5 100/5 51/5 100/5 100/5 51/4 100/4
P+L 3/2 3/2 3/2 3/2 3/2 2/2 2/2
C+R 50/2 50/2 50/2
C+R 40/2 256/2 40/2 256/2 256/2 40/2 256/2
P 3/1 3/1 3/1 3/1 3/1 2/1 2/1
F+R 500 500 500 500 500 500 500
D 50
F+R 2 2 200 200 200 2 2
D 50
F 2 2 2

TABLE I: Topology of networks. C+R - convolution layer followed by a
ReLU layer with ”filter count / filter size”. P[+L] - pooling layer [followed
by local response normalisation] with ”pooling raster size / step length”.
F[+R] - neuron layer [followed by a ReLu layer] with ”neurons count”.
D - dropout layer with ”dropped connection in percent”. Networks 09 and
11 have identical topologies, but 11 use gropping, network 09 does not.
Network 10 and 12 have identical topologies, but 12 use gropping, network
10 does not.

Net12) which are identical to Net09 Net10, but received
inputs of 56 × 56 images by gropping (Fig. I). Comparing
the networks Net03 and Net09, see Fig. 5, we did not find
significant differences in average precision, but Net10 shows
significantly better results in terms of precision compared to
Net04. This can be explained by the reduction of the filter
size. It is not surprising to find that gropping improves the
detection rate significantly, see Fig. 5, as demonstrated by
Net11 or Net 12, while reaching higher precision rates than
Net09 Net10. This demonstrates that gropping is a useful
way to achieve good classification models using small data
sets, or to increase precision while working on big data sets
as well.

Fig. 5 shows that reducing the filter size of convolution
layers, as done for all networks from Net04 to Net10, can
have a positive effect on classification precision. However,
in another example, this assumption was not true for a three
layered network (Net03 to Net09). The precise effect of the
filter size on precision and maturity still needs to be further
investigated.

As a result, on the 800 test images we achieved a precision
score of approx. 80 percent, i.e., 80 percent of images
containing a vehicle were correctly classified as vehicle
containing images. Fig. 6 and 7 show good and bad examples
for vehicle classification.

V. CONCLUSION

The approach introduced in this paper, which is based
on a convolutional neural network, was applied to a vehicle
detector and classifier of an autonomous vehicle at the Freie
Universität Berlin. A front camera in this vehicle provided
the images on which the algorithm runs.

We could demonstrate that it is possible to train a CNN
with less than 6000 images and a test data set of 800 images.
The algorithm was able to classify more than 80 percent of
the image patches correctly. The images used were taken
from real traffic situations, in part in bad lighting conditions.



To optimize the network topology, several networks were
trained on the data set. Comparing the resulting networks
showed that deeper networks with more convolution layers,
as well as more fully connected layers, can improve the
detection rate significantly. Furthermore, the experiments
showed that the choice of appropriate filter sizes leads to
higher precisions. The optimal ratio of filter size to image
size still needs to be determined. In addition, gropping helped
increasing the robustness of the classificator w.r.t. varying
positions of the object within the image.

The results presented in this paper show that a CNN based
classifier is suitable for a real-time classification of vehicles.

Using the here described CNNs on preselected image
patches, acquired by sensor fusion, allowed us to run the
detection and classification algorithm with a frame rate of 5
Hz.

Still, especially a larger training data set would help
to increase classification precision and robustness towards
different lighting conditions, object poses within the image,
different objects, and different camera parameters. It is likely
that bigger training data sets decrease the classification
precision variance over different training runs on the same
network type.

Besides the aforementioned improvements, the ability to
classify objects many classes, i.e., in our scenario pedes-
trians, traffic lights, traffic signs, different vehicly types,
constitutes another very important area for future research.
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