Interactive Adaptation of Real-Time Object Detectors

Daniel Goehring, Judy Hoffman, Erik Rodner, Kate Saenko, Trevor Darrell
Motivation

• Fast object detection using 2d-images: What is possible with state-of-the-art vision techniques and databases?

• Training of HOG-feature based classifiers can be time-consuming

• Models trained on large databases often perform poorly in real situations, efficient domain adaptation is required
Contribution

- **Main components:**
 - take advantage of large scale internet database, thousands of classes: ImageNet
 - fast training with whitened HOG
 - use in-situ images
 - fast model adaptation
 - realtime detection with 2d-FFT
 - ROS framework to execute on the PR2 robot platform
System Overview

Interactive Adaptation of Real-Time Object Detectors

- in-situ data (object-centric images)
- online source data (bounding boxes, images)

Training of a WHOG model

ImageNet DPM training

Adaptation and model combination

new in-situ detection model

previous models

Daniel Goehring
02. June 2014

International Computer Science Institute, Berkeley, CA, U.S.A.
Interactive Adaptation of Real-Time Object Detectors

ImageNet

- 14 million images
- 21k semantic concepts
- many with annotated bounding boxes
- synset names and descriptions
HOG Features

- Linear sliding window detectors, using HOG features are robust to illumination changes and small shifts

- Detection score calculated with feature representation of an image $\phi(I)$, with filter vector w on position x (and a certain scale):

$$\arg\max_x f_w(x) = \arg\max_x [w \ast \phi(I)](x)$$
Example: Bottle

New **in-situ** training image and one-shot detection model without adaptation

IMAGENET detection model for synset bottle
Fast Learning of Detection Models

- Object detection over the past few years converged on using linear SVM over HOG features.

- Linear SVM training of positive and negative examples is expensive, in particular for training of thousands of categories, suppression of false positives.

- Whitened HOG features (WHO) based on Linear Discriminant Analysis: significant decrease of training time (Hariharan, Malik, et. al. ECCV ‘12).
Whitened HOG Features

• Assumption: positive and negative training example are Gaussian distributed, which leads to an optimal hyperplane separating positive and negative sets:

\[w = S_0^{-1} (\mu_0 - \mu_1) \]

• covariance matrix \(S_0 \) can be estimated from unlabeled data and reused for all categories to whiten and implicitly decorrelate HOG features.

• linear descriptor computes the difference of average positive and negative features in a whitened space (Hariharan, Malik, et. al. ECCV ‘12)
Interactive Learning Interface

- user inputs search term
- matching of terms with ImageNet synsets
- visual feedback for in-situ training
- bounding box visualization
- 5 images
Adaptation of Model Mixtures

- Incorporate the models learned on in-situ images with max-fusion

- add in-situ model as additional component in the detection mixture model

\[f_M(x) = \max_{M \in M_I \cup M_O} f_M(x) \]
Fast inference with Fourier Transformation

• bottleneck during detection is the convolution of learned filters with HOG feature map of the image

• speedup by taking advantage of the convolution theorem

• detection speed: 2 Hz for 20 models on a 2.5 GHz machine with 320x240 pixel images
Click to play
PR2 demo
Detection Examples
Example: Office Data
Experimental Results

- average precision (AP) for a category calculated as the integral of the precision-recall curve
- detection was correct when the detected bounding box overlapped at least 50% with the trained one
Conclusion

• we presented an approach to learning detection models on the fly
• combined training data from large-scale databases with few in-situ images
• adaptation of models learned from internet sources to the target environment led to better detection results
• simple adaptation scheme and fast training in less than 1 minute (including downloading bounding boxes)
• fast detection using 2d-FFT
• http://raptor.berkeleyvision.org
Future Work

• improve the detector by adding some rotational invariance to our models

• proposing object hypotheses to the user

• active learning techniques to guide the acquisition step during learning to examples with a significant impact on the classification model